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Preface
I congratulate you, that you're really going to do this. To sum it up, this is an ASM Tutorial 
written by me, Tarek701. The goal of this tutorial is to teach N64 Hackers how to code in 
MIPS Assembly, successfully assemble it to the game and make big use of it. Before, I had
to individually explain everyone how “this” or “that” works, which, after a certain amount of 
time, started to annoy me and so my decision to write a MIPS ASM Tutorial became truth. 
And looking from my own side, I really think that explaining each stuff “generally” in a 
document works way better for me than explaining it individually for everyone. Of course, 
this won't mean that I'm not going to explain it as easy as possible. Still, you should be 
able to have some requirements before we can start. I'm explaining them later.

I asked myself, whether I keep this tutorial game-specific (in my case, SM64 Hacking) or 
not. After a few struggles, I've finally decided to develop the tutorial on SM64. (Super 
Mario 64) But this doesn't mean that this tutorial couldn't serve any other purpose than 
SM64 Hacking, such like Zelda64 Hacking or even more. The main topic is still going to be
MIPS Assembly, while I just use SM64 to show some practical examples. As you know, 
theory is important, but practice is the most important thing. What's the point of reading 
through all this tutorial without doing anything practical? So, expect some theory-parts and 
then a practical test in-game.

For those, who don't know who I am, my name is Tarek701 and I'm active on Origami64 
(from where you most likely downloaded my tutorial) and YouTube. I'm the developer of 
the current modern MIPS Assembler “CajeASM” which offers a lot of nice features and is 
going to be used in my tutorial. It can be found here. I guess you should use it too, as it's 
currently the only legit MIPS Assembler out there which offers that much of features.

Now, after you know me now, I'm going to explain a few “document-specific” things. This is
for structuring purposes.

Importance & Optionality:
If you see a chapter marked as: “!!!!“ → This means the chapter is important and a “must-
have” knowledge to continue. 

If you see a chapter marked as: “****” → This means that the chapter is optional and may 
advance you in MIPS Assembly knowledge, but isn't required to continue in the tutorial.

If there's no symbol, then it's an usual chapter. This doesn't mean however, that the 
chapter isn't important. It just isn't one of those “must-have” basics, as the chapter either 
makes practical use of the stuff you've learned before or is a part of the tutorial itself, which
you probably want to do, lol.

Levels & Exercises
If you see a chapter marked as: “EX” → This means that this is an exercise. Mostly those 
chapters are also marked with the four exclamation marks. Basically, this chapter is testing
your skills you've learned so far in the tutorial. 

Exercises are marked with Levels, showing the severity of the following test. However, this
may depend on each person. So, this is just an objective rating of severity of the test. So, 
don't demotivate yourself just because the Level is Hard. 

http://www.romhacking.net/utilities/1085/


LV1 → The test is easy and most likely only asks for some theoretical questions unrelated 
to MIPS Assembly. If LV1.5 then you get ASM related questions, which are a bit harder.

LV2 → The test is middle and is a practical test related to MIPS Assembly. LV2 Exercises 
most likely want you to code something in MIPS Assembly.

LV3 → This test is harder, most likely mixed questions about MIPS Assembly and wants 
you to code something more big. 

Many special thanks to the ASM MasterRace who helped me to learn MIPS Assembly,
especially

Kazeshin (Kaze Emanuar), Skelux, Xavior, LevelUp(from HF, cool guy) and shyguy
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Chapter 1: Introduction into MIPS ASM !!!!
Sitting here and thinking right now, what is ASM? ASM stands for ASseMbly. MIPS is 
another acronym standing for: “Microprocessor without Interlocked Pipeline Stages”. So, 
what makes MIPS so special? As the name implies, MIPS does not make use of locking 
pipeline stages. 

Usually, processors are processing commands in steps through a so-called Pipeline, so it's
able to have several instructions in different steps of handling coincident in the CPU. Now, 
if a subsequent instruction is instructed to a preceding instruction, the instruction will 
eventually have to be interrupted until it's available. This is done by “Locks”. So, in short: A 
pipeline lock is nothing else than a simple interrupt to a subsequent instruction that is 
instructed to a preceding instruction and this stays until availability is confirmed.

MIPS is now special, because it denies those locks and instead wants a corresponding 
action from either the ASM Programmer (me and you) or from the compiler like sorting or 
adding a NOP instruction. (NOP = No Operation. Basically, it does nothing) Thanks to this 
the architecture can be kept simple and that's what I personally like on MIPS. Without this 
simplicity done through the declination of pipeline locks, MIPS would've been way harder.

I know, that you may have not understood everything but I tried my best to explain it as a 
easy as possible. If you didn't understand this, don't be sad. Just be aware of that, MIPS is
really easy to learn if we talk about the actual Assembly Code.

With MIPS ASM you can code all kind of stuff for N64 Games (such as custom features for
SM64). Assembly is a 2nd generation programming language and is therefore “low-level” 
when compared to higher programming languages like C++, Java or C#. ASM is readable 
machine code, which is later translated into real machine code.

To show off an example, look here:
A “specific” order of bits adds two values together, like:

10000 1001 00001 00001

(10000 would mean: do Add and 1001 means some “container” we want to store the 
result, while 00001 and 00001 are our operands we want to add)

So, basically the above wouldn't do anything else than Container = 1 + 1 and store the 
result in “Container”. So, Container would contain the result 00010 (10 = 2 in decimal)

Now imagine having thousands of those binary values. You can't imagine it, it would get 
complicated sooner or later. So, people decided to write “Assemblers” which let you write 
human readable code which is then translated later (once it's assembled) to something like
our above binary order.

Ex.:
We do the above example. Some assembler could allow us to write:
ADD Container, 1, 4

Which would be translated to:
10000 1001 00001 00100

(100 in binary is 4 in decimal, by the way). Cool stuff, right?



Chapter 2: Hexadecimal, the Base 16 Numeral System !!!!
To program in MIPS ASM, you will have to learn the basics of the so-called “Hexadecimal” 
system. It's often referred just to as “Hex” and is another counting system, similar to 
counting systems like decimal, which is used everyday when we buy stuff, when I count 
my potatoes (lel), etc. The only difference between Hexadecimal and Decimal is, that the 
hexadecimal system consists of additional 6 digits per place value, while the decimal 
system only has 10 digits (0-9). This can be illustrated in a table and may help you to 
understand the difference.

Decimal Hexadecimal
0 0x0
1 0x1
2 0x2
3 0x3
4 0x4
5 0x5
6 0x6
7 0x7
8 0x8
9 0x9
10 0xA
11 0xB
12 0xC
13 0xD
14 0xE
15 0xF
16 0x10

And the numbers will continue, 11, 12, 13, 14, 15, …., 1A, 1B, 1C, 20, …, and so on.

To not confuse hex numbers with decimal numbers, hex numbers are often prefixed with 
0x, $ or suffixed with h. (ex.: 0x25, $25 or 25h) CajeASM (my MIPS Assembler) allows you
to use “0x” and “$” for Hex numbers, while you use “#” for decimal and “%” for binary 
values.

In MIPS assembly there's a so-called “Negative Rule” meaning that values which are 
greater than 0x7FFF are considered as negative numbers, starting from -32768, and 
counting down as the hex number increases.

Decimal Hexadecimal
32767 0x7FFF

-32768 0x8000

-32767 0x8001

[...] [...]

-2 0xFFFE

-1 0xFFFF

Now, you probably want to know how to quickly calculate a positive number out of a 



negative number or the opposite. Well, that's quite easy. Basically, you just open up your 
Windows Calculator (or any calculator of your choice):

(0xFFFE would be -2 in decimal)

Now, you just press the +- Button and your value is automatically converted to a positive 
value:

Remember, that you always have to select “Word” View, as the negative rule is different on
Dword and Qword.



Chapter 3: Binary, the Base 2 Numeral System
Now, after we've learned about hexadecimal, we will now learn one another numeral 
system, the “Binary” system. As you may know already, binary only allows two digits which
are 1 and 0. (They're often called true and false in programming) 

If you open up a HexEditor you might have noticed that Hex numbers are always displayed
as 2 digit numbers like “22 6D 8A CC 29”. Basically, this was made to keep the hex values 
“compatible” to the binary system. A would represent a “nibble” in binary aka 4-bits. (A = 
1000 in binary) Two hexadecimal digits represent therefore a “byte” aka 8-bits, which is 
more comfortable for us as every PC in general starts with the “byte” count and doesn't 
count the nibbles. 

Learning binary can be a bit time consuming and not easy, but actually counting in binary 
is a really easy thing. Basically, you just need to imagine that after 1, the 1 will move one 
to left.

Ex.:
0000
0001
0010
0011
0100
0101
0110
0111
1000

So, if we have 0000, 1 goes to the first zero: 0001. Now, first 1 is filled and the 1 moves 
now one to left: 0010. Now, it won't move as we first have to fill that zero on the right, 
resulting in: 0011. Now, our 1 moves one to left and zero's all other digits behind the 1: 
0100. And this goes so on... It's actually really easy. 

Where is binary useful? Well, it can be quite useful if you give a hex number multiple 
purposes. That way, you can save some bytes in ROM or RAM. As an example, let's 
indicate that bit 9 sets your level to “day” or “night”, bit 8 that a specific object appears or 
not. I'm using a lot the word “or”. That's because bits can have only two values, so the 
effect can be treated as “either this or that”. The level is either day or night, there's no 
inbetween or anything else. Such values are also called “flags”.

Here's a little table to give you general overview of counting in hex and binary:



Decimal Hexadecimal Binary
00 $00 %0000 0000
01 $01 %0000 0001
02 $02 %0000 0010
03 $03 %0000 0011
04 $04 %0000 0100
05 $05 %0000 0101
06 $06 %0000 0110
07 $07 %0000 0111
08 $08 %0000 1000
09 $09 %0000 1001
10 $0A %0000 1010
11 $0B %0000 1011
12 $0C %0000 1100
13 $0D %0000 1101
14 $0E %0000 1110
15 $0F %0000 1111
16 $10 %0001 0000

As I said earlier, “%” prefix indicates a binary value and is also used in CajeASM.



Chapter 4: ROM, RAM, Save Chips and Addresses !!!!
You may have heard those terms already, like “ROM” and “RAM”, but probably never knew
the difference between them. But it's really important to know the difference, as you're later
going to modify both ROM and RAM in-game. 

ROM means “Read-Only Memory” and can't be modified by using ASM. Basically, it's the 
game itself containing all the graphics, music, ASM data, etc. which emulators read, load 
and run. In short: It's the .z64/.v64/.n64 file.

RAM is “Random Access Memory” and a bit different than ROM. RAM is mostly also just 
referred to as “Memory”, while (in my eyes) RAM should be the preferred term. The RAM 
consists of a bunch of dynamic variables (like (in our case) Mario’s current coin amount, 
Mario’s current lives, etc.) used by the ROM. That's actually what we modify through ASM 
coding.

Now, there are so-called “Addresses” or also referred to as “Offsets”. These are simply a 
order of numbers which “point” to a specific hex number An example:

0x0000000: 25 69 DD 55
0x0000004: AA 22 D5 66

The hex value 0x25 would be 0x0000000, 0x69 would be 0x0000001, 0xDD would be 
0x0000002, 0x55 would be 0x0000003, and 0xAA (the next row) would be 0x0000004.

Now, a “RAM Address” is simply a specific place in the RAM, which can't be accessed 
through the ROM. (Except when we calculate the ROM Offset out of the RAM Address) 
For example, if 0x8034B262 contains the current coin amount, like 0x000A (10 coins in 
decimal), then 0x8034B262 contains the hex value 0x000A (halfword). It's really simple.

RAM is not “saved”. Once the N64 resets, the RAM also resets (On the real hardware it's 
put to random values. Emulators often do however specific values, like 0xFF or 0x55) and 
that's basically it. Really simple.

The N64 also consists of so-called “Save Chips” which save your game play to the game 
cartridge. The N64 knows five types of data saving:

EEPROM (512 Bytes), 4x EEPROM (2KBytes), SRAM (32KBytes), FlashRAM 
(128KBytes) and the Controller Pak (256KBytes). All save chips, except for the controller 
Pak, are built into individual game cartridges. The Controller Pak instead is plugged into 
the N64 Controller. 

Those are also “RAMs” (if you want to call them like that) and are located in several 
different addresses. In our case, the EEPROM ranges in RAM from 0x80207700 up to 
0x80207900. However, there's more space after it and therefore allowing to allocate even 
more EEPROM. I'm later explaining how to work with EEPROM. Generally said, the 
EEPROM and the other save chips are behaving like the RAM; You can store anything 
and load anything from it except that the values do not get cleared when the N64 resets. 
On Emulators, the EEPROM is stored in a separate file, known as .eep files (in PJ64). 
(They're mostly located in: AppData/Local/VirtualStore/Program Files (x86)/Project 64 
1.6/Save)



LV1 Test:
Q: What does MIPS stand for?

Q: What does ASM stand for and what does it mean?

Q: What's an “Assembler”?

Q: What programming generation is ASM? Is it high or low-level when compared to
for example, Java?

Q: What is the hexadecimal system? What are the differences between decimal and hex?

Q: What does 0xFF mean in decimal?

Q: What is the “negative rule”? And why is it important?

Q: What happens when the hex value is over 0x7FFF? What decimal value would be this
(in 16-bit range please)

Q: What is the base 2 digit numeral system?

Q: Where (for example) could you use the base 2 system?

Q: What is ROM and RAM, and where's the difference between them?

Q: What's an “address”?

Q: What are “save chips” (especially the EEPROM)?

A little theoretical test for you, before we continue. Try to be honest with yourself and don't 
cheat. If you're not able to solve it, you should re-read everything again and re-try. This is 
the pure basic stuff you should have knowledge about. 



Chapter 5: The General Purpose Registers (GPR) !!!!
Now, we're finally moving on. If you went through all this until here, I congratulate you. We 
can now finally start with MIPS Assembly. Before we actually “code” however, we still have
yet to learn a “Basic” for the MIPS Assembly itself: “Registers”.

In the very beginning of my tutorial I showed you an example how ASM code could look 
like. There I used a so-called: “Container” to store my result. Basically, that's what a 
“register” in general does. It's a container, which contains values. You can load/store 
values from it. 

The MIPS CPU consists of exactly 32 so-called: “General Purpose Registers” (GPR) 
registers and are 64-bit wide (XXXX YYYY ZZZZ), but the Nintendo64 seems to operate in
32-bit mode (for most games), as far as I know, thus the registers are just 32-bit wide in 
our case. Then there are another “special” registers, regarding floating-point operations 
and are simply called single/double-precision registers. 

As the name “General Purpose Registers” implies, I'm going to explain the “general” 
purpose of the registers, which doesn't mean that the GPRs couldn't serve another 
purpose. 

Don't be confused by the register numbers (R0, R1, R2, …, R31). They're simply the 
“numeral” expression of the register and it's recommended to always use the register 
names as this is way more overviewable.

The zero, R0 register is a hardwired and is permanently zero. This value can't be 
changed, no matter what you do. It's often used for ORI operations or anything which 
require the value zero.

The AT, R1 register is reserved by the assembler. It will later get our attention if we start 
going deeper into branches. But in general, this shouldn't be touched.

The V0-V1, R2-R3 registers are so-called “return value” registers. As the name says 
already, these registers are supposed to return values from either a subroutine(= function) 
or a specific address. Usually the results are 32-bit wide and uses therefore V0 only. If the 
result is higher than 32-bit (64-bit) then V1 will be used too. 

The A0-A3, R4-R7 registers are the argument registers. Obviously, they're used for a 
subroutine/function. They're simply said, our parameters for the subroutine we're calling. If 
we have more than four arguments, then we need to pass them to the stack. As I said 
before, this is the general purpose. Theoretically you even could use V0 or T0-T7 as 
arguments.

The T0-T7, R8-R15 registers are “temporary” registers, used for values which are only 
used in this subroutine. If you do an subroutine call (JAL) the callee wouldn't have to save 
these registers.

The S0-S7, R16-R23 registers are the “saved” registers, which will save the callee. 
Subroutines can only use this, if this register is pushed on the stack. 

The T8-T9, R24-R25 registers are (again) the temporary registers and are used in addition
to T0 - T7 above.



The K0-K1, R26-R27 registers are reserved by the kernel of the system and reserved for 
use by the interrupt handler. Do not modify or play around with it. It will crash your 
emulator.

The following registers are not “directly” containers of values (aka what we understand as 
registers), but more like “Pointers” to values. Still, they can be used to “refer” to the actual 
container (aka load and store values), meaning that we have more like indirect registers 
here:

The GP, R28 register is the Global Pointer. It points to the middle of the block memory in 
the static data segment. This would be our RDRAM in N64.

The SP, R29 register is the Stack Pointer. It points to the top of the stack. We're gonna 
learn about it more and show you the big use of it. Also, remember that the stack grows 
from high memory to low memory. This means, if you SP with a positive number you go 
backwards, if you SP with a negative number you go forward.

The FP, R30 register is the Frame Pointer. The FP register is a bit similar to SP register, 
however the FP register does point to what the SP register DID point before. This can be 
useful if you're not sure anymore where a specific parameter was stored. I explain this 
later. This register here can also be considered another save register (S8). 

The next register is a normal register again, but also special in it's own kind, as it receives 
it's value through subroutine calls.

The RA, R31 register is the Return Address register. Once we made a JAL to a subroutine,
the RA register will save the address we jumped from and once the subroutine is done we 
will jump back to the usual routine. Sometimes you will have to push the RA register on the
stack, because if you do a JAL in another subroutine then the old return address is lost.

Now, there are also some quite special registers such like the 32 single-precision FP 
registers:
F0-F31 are used for floating-point operations. We're getting later confronted with them.

There are also another two special registers, called Lo and Hi, which store the results of 
multiplication and division operations. They can't be addressed directly, but the contents 
can be accessed by special instructions MFHI (“move from Hi”) and MFLO (“move from 
Lo”). We also learn more about them later.

Summary:
The general purpose of a register is to be filled with values, to be used in arithmetic 
operations (+, -, * and /), to be load/store from/to an address. For example, you load a 
value from an address to a register, progress the register content and later store the 
calculated value back to the address.



Chapter 6: First View into MIPS Assembly
So, after we've learned about the registers, we can finally start and write our first MIPS 
ASM code! For this, you will need an actual MIPS Assembler. Download CajeASM, the link
is here. After you're done with downloading, extract CajeASM in a folder of your choice. If 
you open up CajeASM vX.XX.exe (the GUI) you should see this:

It's so easy, that even a five year old could use it! It's built up, so you intuitively know what 
to do. Just select your target ROM and your ASM file and press assemble. That's it!

And now, let's stop waiting and finally start writing a simple MIPS ASM code. Just learn 
and watch:

.org 0x861C0
ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

LUI A0, 0x240C
ORI A0, A0, 0x0001
JAL 0x802CA190
NOP

LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

Paste this short code into the notepad of your choice and save it as “whatever.asm”. Now 
try to assemble your code to a clean SM64 ROM. Start your ROM... What will you see... 
umm hear? Yes, “Here We Go” sounds playing non-stop. So, that's what the code does. It 
simply plays the “Here We Go” sound which is looped (but not through the asm code, but 
by the behavior itself! Just saying). Also, “.org” means that our code should be put in a 
specific address.

Now, let me explain Step-For-Step:

First, we do
ADDIU SP, SP, 0xFFE8

Which (if you know already) has something to do with the Stack. Basically, we allocate 
memory by subtracting 24 from the stack. (Remember, 0xFFE8 means -24!) So, if we want



to “allocate” memory ready to be used, we always “subtract” from the stack. When we we 
want to fill the memory again, we simply add back 24 to the stack. You see, it's really 
simple. Now, the instruction itself just says:

SP + (-24) and store result in SP. Basically, the SP will now point -24 backwards, which is 
“forward” in our case as the Stack grows from “higher” to “low” memory. So, remember 
this! ADDIU also means Add Immediate Unsigned. However, the values are not really 
unsigned (as you can see). Difference between ADDI and ADDIU is, that ADDIU will not 
throw an overflow exception when the result in the target register is greater than 2^31-1 
(32-bit) or 2^63-1 (64-bit).

SW RA, 0x14(SP)

This instruction stores the current return address (in RA) to the stack, on SP + 0x14 aka 20
bytes. A return address is, as I explained before, the address of the routine we came from. 
The purpose of storing the return address to the stack simply is, that once we jump to 
another subroutine the old return address of the current routine is lost and thanks to 
pushing the return address to the stack, we can later get it back again and jump to it, back 
to our main routine. The instruction itself does:

Store Word, to SP + 0x14 (lower half). 

I'm explaining this later more in detail.

LUI A0, 0x240C
ORI A0, A0, 0x0001
JAL 0x802CA190
NOP

This code snippet is actually our “first” subroutine code. LUI and ORI load the “argument” 
we pass to the subroutine, which is the argument that plays the “Here We Go” sound. Let 
me explain the instructions more clearly:

LUI = Load Upper Immediate.

LUI basically loads the “upper” half of an address or value, in this case it simply loads the 
value to the first four digits from left:

LUI A0, 0x240C

A0 = 0x240C0000

ORI A0, A0, 0x0001

ORI = OR Immediate

ORI is a simple OR expression. Basically, in expressions you say “this or that” indicating 
that you have an option between two things. Whatever you take, both are legit. 

1 or 0 = 1
0 or 1 = 1
0 or 0 = 0



1 or 1 = 1

So, the output is only 1, if one of the options is 1. In a hexadecimal case everything over 
0x00 would count as 1. 
So, our ORI will not change the value “0x0001” and it will be still the very same. It even 
works with 0x011D or 0x144A or whatever you want. As long as the last four digits are 
zero, this won't be a problem. And that's what ORI basically does. 

ORI shifts the value to the LAST four digits from left, resulting in:

A0 = 0x240C0001

As you see now, 0x0001 is now standing behind the 0x240C. So, remember: LUI does first
four from left, ORI does last four from left. 

Now instructive, LUI is:

LUI rt, imm

(rt being the register where the “imm” (16-bit value, immediate value) is load to)

ORI rd, rt, imm 

(rd being the destination where the result of the OR operation is stored and rt being the 
operand and imm being the operand which both are OR'd)

Next, there's the JAL instruction:

JAL 0x802CA190

Basically, this is the “call” for the subroutine, which will execute the PlaySound function. As
you may have realized, the subroutine just takes one argument (A0). After we passed the 
argument to the subroutine, the routine takes it up and will execute it. 

JAL means Jump and Link.

LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

The last three instructions are the “exit” out of our main routine. Once the subroutine is 
done, our old return address is lost. As we pushed the return address to the stack 
however, we can simply load it from the stack again by using LW (the opposite to SW = 
Store Word, LW = Load Word). Now we don't “yet” jump back to our return address. This is
really important, so listen: Each jump/branch instruction consists of a “delay slot”. This 
delay slot is executed BEFORE the actual jump instruction. This means, that JR RA is 
executed after ADDIU SP, SP, 0x18.

For usually, if there's nothing important to put into the delay slot, it's NOPed:

JR RA
NOP



So, basically the addiu instruction simply adds back 24 to the stack and then jumps back 
to the return address, the address we came from.

As the behavior is “looped” the code is executed over and over again and therefore isn't 
my doing. Of course, you theoretically could built in your own loops, but this is gonna be 
explained later.

Do not be worried if some of this isn't clear enough yet. This was more like a “first view into
MIPS Assembly” and we get more concrete with the following chapters, which will sooner 
or later bring you to realize what each code does from alone. The explanations here were 
also very rough and superficial. 

Chapter 7: Instruction Formats
Maybe you're still confused on how the instruction “format” is like. Currently you just saw 
instructions having only two operands, while some had three. I'm going to explain you now
in much detail, what instruction formats do exist in MIPS. Trust me, they're really easy to 
learn.

Each instruction consists of a format, a “syntax”. There are exceptions (i.e LUI) but in 
general it applies to every instruction we use(d) here. So, let's start:

R Instructions
R Instructions are used, when all contents used by the instruction are located in the 
registers. Basically, R Instructions are the “non-value” instructions. They're completely 
register-specific. That's why it's called R Instructions, standing for “R = Register”.

The syntax is as following:

Opcode   RD,   RS,   RT

RD = Destination Register
RS = Source Register
RT = Target Register.

The “ADD” instruction is a really good example for this:
ADD T0, T1, T2

The above instruction will calculate the content of T1 and T2 and store it into T0. So, T1 is 
our RS, T2 our RT and T0 our RD. 

In a more mathematical sense, it looks like this:
T0 = T1 + T2

The “full” operation(in binary) can be also represented in a table, which I'm showing here:
Opcode RS RT RD Shamt Func

6 Bits 5 Bits 5 Bits 5 Bits 5 Bits 6 Bits

Opcode
This is the instruction. In our table case, this is the machine code representation of the 
instruction mnemonic (like ADD)



RS, RT, RD
These being our registers.

RS = Source Register Operand
RT = Target Register Operand (or 2nd Source Register Operand)
RD = Destination Register Operand (where results are stored)

Shamt/Shift
This is used along with shift and rotate instructions. It's usually zero on classic arithmetic 
instructions like ADD, SUB, MUL, DIV, etc. Basically, Shamt is the amount by which the 
source operand RS is rotated or shifted. This field is 5 bits long (6 to 10).

Func
For instructions that share an opcode, the func parameter contains the necessary control 
codes to differentiate the instructions. Ex.: Opcode 0x00 accesses the ALU, and the func 
selects which ALU function to use. This field is 6 bits long (0 to 5). (ALU = 
Arithmetical/Logical Unit, basically anything logical/arithmetical related stuff such like 
shifting, mathematical instructions, etc.)

Usually, you won't see R Instructions that often. You most likely will work more with the 
following instruction format.

I Instructions
I instructions are used when an instruction has to operate an immediate (16-bit) value and 
the content of a register. Immediate Values are only 16-bit long.

The Syntax is as following:

Opcode   RT,   RS,  IMM

IMM = Immediate Value (16-bit Value)

The ADDIU instruction can be taken as an example here:
ADDIU T0, T1, 0x269D

The above instruction will calculate the sum of the content of T1 and the immediate value 
and store the result in T0.

This would be equivalent in maths as:
T0 = T1 + 0x269D

Again, the full operation looks like this in a table:
Opcode RS RT Immediate

6 Bits 5 Bits 5 Bits 16 Bits

Immediate
This is our 16-bit immediate value. (0 to 15) This value is used as the offset value in 
various instructions and depending on the instruction, may be expressed in two's 
complement. 



These kind of instructions are appearing very often, way more often than R Instructions 
and the following J Instructions.

J Instructions
J Instructions are used when a jump needs to be performed. J Instructions allows the most
space for an immediate value, as the addresses are large numbers and 32-bit long. 

The full syntax:

Opcode   LABEL

The opcode is (once again) our mnemonic for the particular jump instruction and LABEL is 
our target address we want to jump to. CajeASM allows to use actual addresses or let 
CajeASM calculate them automatically and instead use “Label Names”.

An example of such a jump is a very simple J opcode, which just does a jump to a target:

J 0x8033C660

This would jump to address: 0x8033C660.

Or (if you defined a label in your ASM code) jump to the label by calling it in your J 
instruction:

J LabelName

Which would jump to the !LabelName address. (CajeASM calculates the address 
automatically).

In a table, this looks like:

Opcode Target

6 Bits 26 Bits

B Instructions
B Instructions are similar to J Instructions, just that these are, in opposite to J Instructions, 
conditional jumps while J Instructions are absolute jumps. B stands for Branch, while J 
stands for Jump. Basically both do the same, but branch is referred to “conditional jumps” 
while J to usual, direct jumps.

The full syntax:

Opcode   RS,   RT,  LABEL

In this case, RS and RT are the both registers which are compared and LABEL the 
address/label we jump to, if the condition is true. 

An example opcode is BEQ:
BEQ T0, T1, 0x80038A40



This checks if T0 is equal to T1. If the condition is true, then we branch to 0x80038A40.
In a more mathematical sense, it looks like this:
If T0 == T1 → 0x80038A40

Illustrating this again in a table:

Opcode RS RT Branch Target

6 Bits 5 Bits 5 Bits 16 Bits

If you're wondering about why branch target is 16-bits but the input above is 32-bit, then 
listen: 

Basically, a normal J Instruction is a “direct” jump to an address while a branch is more like
a step-by-step jumping. J Jumps are direct, while Branches jump in four byte steps from 
the address it currently sits on. (However, I have to note here that the J and JAL instruction
is in fact not real “direct” jumping, and can be more liked considered pseudo-direct 
jumping, as the jump instruction is limited to a 256MB address page, in which the full jump 
is in dependence of the state of the PC (Program Counter) register)

Ex.:
0x00000000: BEQ T0, T1, 0x0000000C
0x00000004: ADDIU T0, T1, 0x0001
0x00000008: ADD T0, T1, T2
0x0000000C: SUB T0, T1, T2

Basically, the BEQ would be translated as:

BEQ T0, T1, 0x0002

This means that if T0 == T1, we should jump 2(3, as 0xFFFF counts here as -1) forward. 
So, start: 0x00000000 = -1 (0), 0x00000004 = 0 (1), 0x00000008 = 1 (2), 0x0000000C = 2 
(3). 

So, branches are nothing else than jump forward in a specific number. As you may have 
realized already, this works only for a specific area as the range is only 16-bits long. That's
why Branches shouldn't be very far away from the instruction. 

Now after you've learned some of the Instruction Formats, we can move on and get more 
concrete to some specific MIPS instructions. In the next chapter, we're going to work with 
Load/Store Operations and what practical use we can make of them. Be sure that you're 
able to remember each instruction format. Later, when we come to floating-point 
operations, we're going to learn two other instruction formats. Until then, this should be 
enough to know about the instruction formats. 



Chapter 8: Load/Store Operations
So, now we can finally get more concrete after we've learned the instruction formats. 
We've met load/store in Chapter 5 already, when we wrote our first little test code. This 
time, I get into more detail and try to explain it (but easier and more detailed) again. If we 
want to load a value from an address to a register we make use of so-called: “Base 
Addressing” instructions. Base Addressing doesn't mean anything else than that we 
have a “Base” which contains the upper half of an address and we add a lower half to it 
and then MIPS automatically loads the value from that base address + lower half into the 
destination register.

An example, which should be known to you already:
LUI T0, 0x8033        ; Load upper half in T0. T0 = 0x80330000
LW T1, 0x3D54(T0) ; This loads a word value (32-bit) from address 0x80333D54 into 
T1. T0 is UNCHANGED and is still T0 = 0x80330000.

So, what exactly happened here? Well, as you know already LUI loads a value to the first 
four digits from left. We call this the “upper half” of a register. In this moment:

T0 = 0x80330000

In the next instruction, LW simply calculates 0x3D54 + T0, resulting in 0x80333D54 and 
loads the value from that address into T1. T0 isn't changed however! T0 still would be 
0x80330000! This can be useful if you want to load something again with the same upper 
half. So, basically the instruction loads a value from an address which is calculated by 
adding the lower half(0x3D54) to the content of the base register (T0) into the destination 
register (T1). 

To show up the differences between a Word, Halfword and a byte, let me show an 
example:

0x80333D54: 4D 8A 99 5D 2C 66 1A 21

If we now do the above instruction, then T1 would contain:

T1 = 0x4D8A995D

Word       → 32-Bit:  XX XX XX XX 
Halfword → 16-Bit:  XX XX
Byte        →  8-Bit:   XX

0x36 is a byte.

0x3548 is a halfword or two bytes.

0x3548AA50 is a word or four bytes. 

So, what if we want to load a halfword to T1? Well, then we simply take LH, which let's you
load 16-bit values to a destination register:



LUI T0, 0x8033        ; Load upper half in T0. T0 = 0x80330000
LH T1, 0x3D54(T0) ; This loads a halfword from address 0x80333D54 into T1. T0 is 
UNCHANGED! 

If we take our example again;
0x80333D54: 4D 8A 99 5D 2C 66 1A 21

Result from above instruction:
T1 = 0x00004D8A

If we want to load a byte, we'll take LB:

LUI T0, 0x8033        ; Load upper half in T0. T0 = 0x80330000
LB T1, 0x3D54(T0) ; This loads a byte from address 0x80333D54 into T1. T0 is 
UNCHANGED! 

Result from above instruction:
T1 = 0x0000004D

Pretty simple, isn't it? Now, let's say we want to “store” another value to an address now. 
Loading is good at all, but what about storing? Well, you can pretty much imagine yourself 
what the instruction names could be. If we have:

LW = Load Word
LH = Load Halfword
LB = Load Byte

to load values,

Then we also have:
SW = Store Word
SH = Store Halfword
SB = Store Byte

to store values.

Let's say for example, we want to store a byte to our address now. We basically just need 
a value which we want to store. So, one more instruction and that's basically it:

LUI T0, 0x8033         ; Load upper half in T0. T0 = 0x80330000
ORI T1, T1, 0x00BC ; Our byte value is load in T1. T1 = 0x000000BC.
SB T1, 0x3D54(T0)   ; Store value of T1 in address 0x80333D54. T0 is still 
0x80330000.

As you know already, ORI does an OR and as the lower half (the last four digits from left) 
are zero, the value 0xBC will be the same and is shifted there, resulting in T1 being 
0x000000BC. 

Now, the instruction SB says that the byte value IN T1 should be stored in 0x80333D54.
So, if our example looked like this before:



0x80333D54: 4D 8A 99 5D 2C 66 1A 21

It would now (after the SB instruction) look like this:
0x80333D54: BC 8A 99 5D 2C 66 1A 21

This works the same way with SH and SW. It's really simple. And now it's time to do 
something more practical! Let's say we want to store 10 coins to Mario's current coin 
counter. Our code should look like this:

.org 0x861C0
ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

LUI T1, 0x8034
ORI T2, R0, #10
SH T2, 0xB262(T1)

LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

If you look at the middle part, you see that we're doing an ORI. That's our value we want to
store. In CajeASM you can write “#” indicating that the value is a decimal number. This 
makes it easier for you. (It's later translated to hexadecimal as 0x000A) If you now 
assemble the code and go in-game into some level you will see that your coin counter is 
now having 10 coins. As Mario's Behavior is looped, you're not able however to receive 
more coins as the game continuously stores 10 to the coin counter.

So, but now ATTENTION guys. The real address of Mario's Coin Counter is NOT 
0x8034B262! It's actually 0x8033B262! But why did we wrote 0x8034 instead? That's 
easy, because the lower half value “0xB262” is OVER 0x7FFF. In this case, our address is
subtracted by 1. So, if we would write 0x8033B262, the game would load the value from 
0x8032B262, which is incorrect. So, we obviously have to increase the value by one and 
write: 0x8034B262. This subtracts one, resulting in that LH loads the halfword value from 
0x8033B262, which is now correct. PLEASE REMEMBER THIS RULE! It's important that 
you don't forget about it. 

Chapter 9: Arithmetic Operations
Now, we're moving to some arithmetic operations. Under this category, this would be Add, 
Subtract, Multiply and Division. This chapter is gonna be pretty short, as most of this is 
pretty self-explanatory. We're going to take the code from the last chapter again and play 
around with the coin counter a bit. 

First off, we will add two values together. It's so extremely simple, that you should be able 
to understand this in no time. Note: If you still don't understand the whole code itself, then 
please read the recent chapters again, especially the parts you didn't understand before. 
Or else, you're going to fail in the next chapters.

Now, let's try out adding two values together. We load 10 coins and then add 2 to the coin 
amount, resulting in that our code stores 12 coins to Mario’s current coins. Basically, we 
just take ADDI or ADDIU instruction for this. (We take ADDIU, as it's commonly used 



anyway and we don't want to get annoyed with possible overflow exceptions) The 
operands are obviously the register containing the value we want to store and the 2nd 
operand being once again the value we want to store. Logically, we want to calculate:

T2 = T2 + #2 (decimal)

.org 0x861C0
ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

LUI T1, 0x8034
ORI T2, R0, #10
ADDIU T2, T2, #2
SH T2, 0xB262(T1)

LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

As you can see, it's the very same code except for this part:

ADDIU T2, T2, #2

This calculates now:

T2 = T2 + #2

The result is stored in T2, meaning that T2 is now #12 (decimal) and is stored to Mario's 
current coin counter. See, really simple. That's all what ADDI/ADDIU does. Adding an 
immediate value with the content of a register. 

Now, we come to subtraction. Actually, a true subtraction does not exist in MIPS and it's 
done by using again an ADDIU instruction but instead of a positive value, a negative value 
is used. CajeASM provides a SUBI and SUBIU instruction however, making this less 
complicated for you. 

In reality, you would write ADDI/ADDIU to subtract some value from a register. If we want 
to subtract 23 (decimal) from T0 (for example) and save the result to T1 we would write:

ADDIU T1, T0, 0xFFE9

0xFFE9 being “-23”. As you see, we “add” -23 to T0, which is (logically) equivalent of 
subtracting 23 (decimal) from T0. 

As I said, CajeASM provides an instruction for this already, saving your time of calculating 
the negative number of the positive number and simply translates it to the above 
instruction later when the code is assembled.

So, the above example can be written with SUBIU like this:

SUBIU T1, T0, 0x17



(0x17 = 23 (decimal) )
See. That's far more easier. You could also use decimal numbers now (CajeASM does not 
allow expressions like “#-23”. This is no problem anymore, as SUBI let's you write your 
number like #23 and translates it later to a negative number.) instead of hexadecimal 
numbers, when subtracting some value or whatever.
With our example, we can now write the following:

.org 0x861C0
ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

LUI T1, 0x8034
ORI T2, R0, #10
SUBIU T2, T2, #6
SH T2, 0xB262(T1)

LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

The above code now subtracts 6 from 10, resulting in 4. So, our coin counter shows now 
4. See, it really isn't that hard as many think.

The next subject is “Multiplication” and “Division”. Unfortunately, there's no multiplication or
division operation allowing an immediate value. Theoretically I could implement it as a 
pseudo-opcode in CajeASM, but this would just confuse people more. Basically, 
multiplication and division is available as register operation only. So, you would've to load 
the value to a register first and then multiply or divide. We will use two opcodes for this: 
MULT and DIV. I guess you know what MULT and DIV mean. But here's a slight difference
in opposite to addition and subtraction! The result of the operations are (if you know 
already from the register chapter) stored in HI and LO register and not inside of our 
operands. HI and LO are special registers, as they can't be called directly but only from a 
few instructions.

An example would be:

ORI T0, R0, #2
ORI T1, R0, #3
MULT T0, T1

The above operation consists out of three instructions. First, we load the decimal value 2 
to T0 and decimal value 3 to T1. Then we multiply the contents of T0 and T1. The result is 
now stored in HI and LO. Now, let's say the result is greater than 32-bit aka like a 
doubleword(64-bit). Then the result is saved in HI and LO. Usually however our value is 
only a word, halfword or byte and so it's mostly stored in LO register. So, we use another 
instruction to move the result FROM LO to our destination!

Ex.:
ORI T0, R0, #2
ORI T1, R0, #3
MULT T0, T1
MFLO T0



Now, this does the same like above, just that in the end (after the multiplication) the result 
is moved from LO register to T0 register. So, T0 would be (after MFLO) #6 (decimal) now. 
See, it's actually a really simple thing. There are more instructions like MFLO. I'm listing 
them all here:
MFLO = Move From LO Register
MFHI  = Move From HI Register

Then there's the opposite, which allows you to move the register content to the special 
registers LO and HI.

MTLO = Move to LO Register
MTHI  = Move to HI Register

Now, let's show off an example with our coin counter code again:

.org 0x861C0
ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

LUI T1, 0x8034
ORI T2, R0, #10
ORI T3, R0, #3
MULT T2, T3
MFLO T2
SH T2, 0xB262(T1)

LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

This would now calculate 10 * 3 = 30, meaning that Mario would have 30 coins in his 
counter now. Wow, this is really awesome, isn't it?

Now, we come to division. Well, basically it's the same like with multiplication. However, 
there's a difference now! While multiplication stored the upper 32-bit half to HI and the 
lower half to LO (whereas we mostly use LO as our results probably aren't going to be 64-
bit long. Way too big) the division uses HI as the remainder and LO for the quotient aka 
the result of the division. REMEMBER this difference! I show you again:

Multiplication:
If the result is in a 32-bit range such like 0x2554 or 0x2444D8 or 0x2554D89A, then the 
result is stored in LO register only and HI is zero! If the result is in a 64-bit range, then the 
lower 32-bit half is stored in LO while the upper 32-bit half is stored in HI. Example:

0x25449874|2554255D

Basically, HI would contain: 0x25449874 and LO would contain: 0x2554255D.
Division:
Here it's completely different from multiplication. Here, HI is used as the remainder (if you 
divide 3 / 4 for example, the remainder would be 1) and LO is used as the quotient aka the
result of the division. 



So, let's do one short example with our coin counter again and then we're actually done 
here. I think you should know already how this works:

.org 0x861C0
ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

LUI T1, 0x8034
ORI T2, R0, #10
ORI T3, R0, #3
DIV T2, T3
MFLO T2
SH T2, 0xB262(T1)

LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

As you can see, it's the same again. We divide T2 / T3 and then the result is stored in LO 
and we load it from there into T2. 10 / 3 is 3.333 and so on. In short, it's 3. So, Mario's coin
counter would be now 3. 

Now, we learned a lot about the arithmetic operations which can be done on MIPS. In later
chapters, we are going to learn more about shifting, what right and left shifts are and many
other stuff. After this chapter, we're finally going to turn more “dynamic” in ASM coding. So,
please prepare yourself once again, look if you understood everything and if not, try to 
reread everything again and eventually try to code something yourself. If you're ready, then
continue.

Chapter 10: Branches
Now, in this chapter, we're finally going to move on. Before we always used the same old 
example storing a value to an address. But it would be completely boring and nonsense to 
do this. We want our code to be more dynamic, like let our code check for a certain 
amount of coins and then do a specific action. Now... it gets interesting and this is our next 
subject: “Branches”. First off, what exactly is a branch? If you were familiar with any 
programming language before, then you know that branches are nothing else than If … 
then … statements. You also find them in your language you speak currently. 

If the weather is sunny, I will go to the beach.

Our condition is that the weather must be sunny in order that we go to the beach. Now, the
very same happens in programming. There's a condition which has to be fullfilled and only 
then a specific action is done. Let's illustrate this in a more “code” context:



[Branch Instruction] rs, rt, Label
[Opcode]                                      ;\
[Opcode]           ;  | CASE 1 (Condition is false)
[Opcode]           ;/
[…]

Label:
[Opcode]            ;\
[Opcode] ;  | CASE 2 (Condition is true)
[Opcode] ;/
[…]
So, the above is the general tree structure of a condition. In the beginning, we have the 
branch instruction which checks for a condition. (more specifically, compares two registers 
for …) If the condition is true, then the code which I marked as “CASE 1” is skipped and 
our routine jumps to the code below the Label. Else, if the condition is false, then CASE 1 
is not skipped and executed. However, you still have to keep in memory that even if the 
condition isn't true that the code in CASE 2 is still executed. By the way, the name “Label” 
can be also any name you can think of. Just look, that you don't use the same name, as 
this overrides the old label position to the newest label definition! Instead of writing Label 
you could also call it: “ConditionTrue:” 

To sum it up, a branch instruction compares two registers and, depending on if the 
condition is true or false, decides whether to jump to the label or to continue the code 
below the label. 

Of course, there are also other uses for branch instructions, such like the known “Loops”. 
The tree structure is similar to normal labels, but in this case backwards. Example:

Label:
[Opcode]   ;\
[Opcode]   ; | CASE 1 (Condition true)
[Opcode]   ;/
[…][Branch Opcode] Label
[Opcode]   ;\
[Opcode]   ; | CASE 2 (Condition false)
[Opcode]   ;/
[…]

So, what would this do? Well, first CASE 1 is executed and then it checks for the condition.
Now, what happens? So, if the condition is true, then we jump backwards in our code. 
That means CASE 1 is executed again. If the condition is true again, then CASE 1 is 
executed once again. This is going to happen until the condition is false. Only then CASE 
2 is executed. So, this tree structure is useful when you want to execute a code for x 
times. However, you should look out to not create infinite loops, as this is most likely going 
to crash the game. Now, you know the general structure of a branch. Now, I'm going to list 
a few branches, which you should keep in mind:



BEQ (Branch on EQual)       → Branches, if both operands are equal to each other.

BNE (Branch on not EQual) → Branches, if both operands are NOT equal to each other.

BGT (Branch on Greater Than) → Branches, if the source operand is greater than the      
  target operand.

BLT (Branch on Lesser Than) → Branches, if the source operand is lesser than the target
operand.

BGE (Branch on Greater than or Equal To) → Branches, if the source operand is greater 
or equal to the target operand.

BLE (Branch on Lesser than or Equal to) → Branches if the source operand is lesser or 
equal to the target operand.

There are even way more branch instructions, however the most of them are completely 
useless to us, as we only need them very rarely. The above instructions are the common 
and most important ones you should remember. 

Let's start with an easy example. Let's say we want to check if Mario has 10 coins. If the 
condition is true, his life counter should be increased by 1 and his coins set to 0 again. 

.org 0x861C0
ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

LUI T1, 0x8034
LH T3, 0xB218(T1) // Mario's current coins.
ORI T4, R0, #10

BEQ T3, T4, LifeIncrease // current coins == 10 ? 
NOP
BNE T3, T4, Exit  // current coins != 10 ?
NOP

LifeIncrease:
LB T2, 0xB21D(T1)
ADDI T2, T2, #1
SB T2, 0xB21D(T1) // Add 1 to life

SUBIU T3, T3, #10
SH T3, 0xB218(T1) // subtract 10

Exit:
LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

This is how our code could look like. First, we load Mario's current coins into T3
(0x8033B218. Attention! Because of negative rule upper half has to be 0x8034) And then 



we use another register to contain our value which we use to check for Mario's coins. Then
the important part:

BEQ T3, T4, LifeIncrease // current coins == 10 ? 
NOP
BNE T3, T4, Exit  // current coins != 10 ?
NOP

Basically this checks now if Mario's current coins are equal to decimal value 10 (hex: 0xA).
If this is the case, our code jumps to Label “LifeIncrease” which loads the current life 
amount into T2, adds 1 and stores it back to the address where our lifes are stored. In 
case you're wondering, each branch and jump instruction consists of a so-called “Delay 
Slot”. This delay slot is executed BEFORE the actual branch. In our case we just put a 
NOP into it. And don't even try to put another branch instruction in a delay slot. This is not 
going to work and crashes. Usually delay slots are useful if you want to save some 
instructions. 

Back to our code: Now it subtracts 10 from current coins and also stores it back to the 
address. However, if you tried out the code in-game, you may notice that the coin counter 
isn't updated anymore! This is because the actual display function loads the current coin 
amount from a different address. This can be fixed quickly by just changing the following 
line at :

LH A3, 0xB262(A3)

To:

LH A3, 0xB218(A3)

This is at address 0x9E7E0. So, our result code looks like this:

.org 0x861C0
ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

LUI T1, 0x8034
LH T3, 0xB218(T1) // Mario's current coins.
ORI T4, R0, #10

BEQ T3, T4, LifeIncrease // current coins == 10 ? 
NOP
BNE T3, T4, Exit  // current coins != 10 ?
NOP

LifeIncrease:
LB T2, 0xB21D(T1)
ADDI T2, T2, #1
SB T2, 0xB21D(T1) // Add 1 to life

SUBIU T3, T3, #10
SH T3, 0xB218(T1) // subtract 10



Exit:
LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

.org 0x9E7E0
LH A3, 0xB218(A3)

If you now try it out again, you will notice that once Mario reaches 10 coins, his lives 
increases by one and his coins are set to 0. So, we learned now: Branches always branch 
if their purpose is fullfilled. If Mario has exactly 10 coins, we branch to label “LifeIncrease”. 
If Mario has more than or below 10 coins, we will branch to label “Exit” and nothing 
happens. 

Now, let's move on and do a more dynamic example. Let's say we now want to check 
whether Mario has exactly or more than 10 coins. But in this case, we would like to add a 
button check too. So, if Mario presses B, then the code should check if Mario currently has
exactly 10 coins or greater than that. If that's the case, we want to increase Mario's life 
counter (once again) by one. This one is gonna be a bit more different, because checking 
buttons is done differently via the ANDI instruction.

.org 0x861C0
ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

LUI T1, 0x8034
LH T0, 0xAFA0(T1)             // Current Button
ANDI T2, T0, 0x4000          // Button B

BNE R0, T2, ButtonCheck // Button B == pressed?
NOP
BEQ R0, T2, Exit   // Button B != pressed?
NOP

ButtonCheck:
LH T3, 0xB218(T1)            // T3 = Mario's coins.
ORI T4, R0, #10 // Coins we want to check.
BGE T3, T4, Increase // T3 >= T4 ? Increase
NOP
BLT T3, T4, Exit // T3 < T4  ? Exit
NOP

Increase:
LB T4, 0xB21D(T1) // T4 = Mario's lifes
ADDIU T4, T4, #1 // T4 = T4 + 1
SB T4, 0xB21D(T1) // Mario's lifes = T4

SUBIU T3, T3, #10 // T3 = T3 - 10
SH T3, 0xB218(T1) // Mario's coins = T3.

Exit:



LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

.org 0x9E7E0
LH A3, 0xB218(A3)

RAM Address 0x8033AFA0 contains the current button value. You need to AND the button 
value you want with the value of the “current button” variable we load into T0 in our case.

ANDI T2, T0, 0x4000          // Button B

This does an AND with T0 and 0x4000. Basically it's a bitwise instruction similar to an OR 
expression. In this case however, AND expects both bits being true in order to set T2 to 1. 
Then the following BNE instruction checks if T2 is NOT equal to 0. If this is the case, we 
jump to label “ButtonCheck” and executes the code from there and now checks if we have 
>= 10 coins. If we have, we jump to label “Increase”, our lifes increase by 1 and Mario's 
coins are subtracted by 10. Then we leave the routine. In case, we have less than 10 
coins, we jump to label “Exit” respectively our routine ends and nothing special will 
happen. The same for BEQ in the beginning. If we don't press any button, we branch to 
exit. 

0x4000 is Button B. Here are the other values:

BUTTON_C_RIGHT = 0x0001,
BUTTON_C_LEFT = 0x0002,
BUTTON_C_DOWN = 0x0004,
BUTTON_C_UP = 0x0008,
BUTTON_R = 0x0010,
BUTTON_L = 0x0020,
BUTTON_D_RIGHT = 0x0100,
BUTTON_D_LEFT = 0x0200,
BUTTON_D_DOWN = 0x0400,
BUTTON_D_UP = 0x0800,
BUTTON_START = 0x1000,
BUTTON_Z = 0x2000,
BUTTON_B = 0x4000,
BUTTON_A = 0x8000 

If you now try out the code in-game (use CajeASM v7.2+), you should notice (once you 
have >= 10 coins) that your life counter increases by 1 and your coins are subtracted by 
10. As you see, this was your first successful code. Now, let's do a backwards loop. Let's 
say we want that Mario's lives increase by 1 'till we reach 30 lives. While this, we subtract 
1 coin for each life we added to Mario. For this, we first check if Mario has exactly 30 
coins, then we check if the amount of lives is equal to the expected 30 coins. 

Our code should look like this: (explanation follows)



.org 0x861C0
ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

LUI T0, 0x8034
LH T1, 0xB218(T0)   // T1 = current coins
ORI T2, R0, #30

BEQ T1, T2, Increase    // T1 == 30 ?
NOP
BNE T1, T2, Exit     // T1 != 30 ?
NOP

Increase:
LB T3, 0xB21D(T0)    // T3 = Mario's Lives
ADDIU T3, T3, #1     // T3 = T3 + 1
SB T3, 0xB21D(T0)   // Mario's Lives = T3

SUBI T1, T1, #1   // T1 = T1 - 1
SH T1, 0xB218(T0)     // current coins = T1

// for(byte i = T3; i < 30; i++)
BEQ T3, T2, Exit
NOP
BLT T3, T2, Increase
NOP

Exit:
LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

.org 0x9E7E0
LH A3, 0xB218(A3)

First off, we check if T1 (current coins) are equal to 10. If this is the case, we branch to 
increase. In label increase we now load current life amount, add one to it and store it back 
to the address. While this we subtract T1 by 1 and store it also back to the address. They 
key instructions are 

BEQ T3, T2, Exit
NOP
BLT T3, T2, Increase
NOP

This two here. Now we check if current lives is equal to 10. If not, we branch backwards 
and repeat the same step over and over again 'till Mario has 10 lives. Then we branch to 
label Exit and the routine is over. Basically this is a “for” loop in assembly-format. (in case 
you're known already with any programming language) Now, I hope you learned 
something about branches. There are a lot more possibilities and just a reminder: Try to 
look at your code objectively and find out whether it makes sense to put a 2nd branch (else)



to your code or not. There are cases where you just could prevent using an else if branch 
in case the directly following code is already the exit out of the routine. My above example 
did this mistake.

.org 0x861C0
ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

LUI T0, 0x8034
LH T1, 0xB218(T0)   // T1 = current coins

BEQ T1, T2, Increase    // T1 == 30 ?
ORI T2, R0, #30

BNE T1, T2, Exit     // T1 != 30 ?
NOP

Increase:
LB T3, 0xB21D(T0)    // T3 = Mario's Lives
ADDIU T3, T3, #1     // T3 = T3 + 1
SB T3, 0xB21D(T0)   // Mario's Lives = T3

SUBI T1, T1, #1   // T1 = T1 - 1
SH T1, 0xB218(T0)     // current coins = T1

// for(byte i = T3; i < 30; i++)
BLT T3, T2, Increase
NOP

Exit:
LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

.org 0x9E7E0
LH A3, 0xB218(A3)

I made two changes here. I put the ORI into the delay slot of BEQ. This saved me 1 
instruction. Below, I deleted the branch to exit part, because the exit is directly below our 
code and in case the BLT does not apply anymore, the code would end itself naturally 
already. So, I saved 2 instructions. Sure, my code could be written even more differently, 
but this was an example. In practice, you should look for an efficient method because (in 
SM64 Hacking case) memory is limited.

In the next chapter we're going to learn about subroutines (= functions). This is were the 
exciting part starts.



Chapter 11: Subroutines
What are subroutines, you might ask. Well, to say it simply: They're methods or functions 
(if we talk in programming language terms). (Sub-)routines, like the prefix “Sub-” implies, 
are routines during another routine. Subroutines can be used like functions and allow us to
pass arguments to them. We already made our very own subroutine a few times already. 
At address 0x861C0 and our previous codes. It was nothing else than a “subroutine” which
was called by another subroutine... and so on. The usual structure of a subroutine in MIPS
does look like this:

ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

// Code here

LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

The reason for this is pretty simple, and I'm going to more detail later on this. But first: 
Before we wrote our own subroutines and let the game settle the rest. Now, we want to 
“call” a subroutine. We did this very early, with our example code playing a sound in loop. 
This one here is a bit more interesting. But first, let's repeat something: There are so-called
argument registers A0-A3. (4 argument registers) Of course, from a logical perspective 
you could even use T0-T7 as arguments, but the programmers expect A0-A3 from you 
(because that's how their compilers managed to do it) and so using any other register 
wouldn't work. I'm just saying this in case you program your own subroutine. You're not 
forced to use the stack if you have more arguments. Sure, using the stack is efficient too, 
but you could also just use another register for this. 

Let's now call the PrintXY function, which prints colorful text on your screen. We can't call 
subroutines by ROM addresses, so we need the RAM Address. The RAM Address for 
PrintXY is 0x802D66C0. PrintXY takes three arguments. The first argument being the X 
position of the text, the 2nd argument being the Y position of the text and the third argument
is our pointer (an address leading to our text) to the ASCII string. To call subroutines we 
make use of the instruction “JAL” (= Jump and Link).

ORI A0, R0, #80 // X= 80
ORI A1, R0, #140            // Y= 140
LUI A2, 0x802C
JAL 0x802D66C0
ORI A2, A2, 0xB244           // pointer = 0x802CB244

The first two instructions are pretty clear and obvious. Then the 3rd argument is a RAM 
pointer to our text. Obviously we use LUI and ORI for this. But like with branches, JAL also
consists of delay slots. So, I put the ORI into the delay slot (which is executed BEFORE 
JAL) and so save 1 instruction. Obviously our text has to be written into our ROM. And we 
need to write it to a part, which is loaded into RAM later. (By DmaCopy) I do this basically 
by just going a bit far away from our subroutine and write our text into it. (Just look that you
don't go too far, as you eventually could write into another subroutine and break the game)



.org 0x861C0
ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

ORI A0, R0, #80 // X= 80
ORI A1, R0, #140            // Y= 140
LUI A2, 0x802C
JAL 0x802D66C0
ORI A2, A2, 0xB244          // pointer = 0x802CB244

Exit:
LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

// RAM address = 0x86244 + 0x80245000 = 0x802CB244
.org 0x86244
.asciiz "Hello World"

The RAM Address can be calculated for the ROM address. (if the range is between 
0x80246000 'till somewhere at 0x80330000) But now to answer the previous question: 
Why are subroutines structured like this?

ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

// Code here

LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

The reason for this is important. If you are in a subroutine, we usually want to leave this 
routine again once it's done, right? Okay. So, once a subroutine is called, the game saves 
the “return address” (the address where we came from, respectively from where we called 
the subroutine) to our register RA (= Return Address). So, RA contains the return address.
Once a subroutine is done, we jump back to our return address. Now here the 
interesting part comes: If you now call a subroutine, while you are in a subroutine, what 
would happen? Yes, maybe you're able to guess it already. While we are in a subroutine, 
RA contains our return address back to our usual routine. If we now call another 
subroutine our old return address would be overridden and lost! So, we allocate space on 
the stack by subtracting -24 from the stack and then saving the current return address on 
it. Now you don't have to worry about it anymore because as long as you keep this 
structure in other subroutines too, your subroutine will successfully pull the return address 
from stack into RA again. More to stack management later.

To illustrate it in a little example:



.org 0x861C0
ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

JAL 0x80258000
NOP
ADD T0, T1, T2                ; 0x861D0 -> code continues here after return.

LW RA, 0x14(SP)
JR RA
ADDIU SP, SP, 0x18

/* Example subroutine. */
.org 0x863C0                   ; Let's assume it's RAM = 0x80258000.
ADDIU SP, SP, 0xFFE8
SW RA, 0x14(SP)

// blah code here

LW RA, 0x14(SP)             ; Load return address: 0x861D0 into RA.
JR RA           ; Jump back to return address. (0x861D0)
ADDIU SP, SP, 0x18         ; Deallocate stack.

The above code shows the example pretty good. Once we jumped to 0x80258000 our 
return address is 0x861D0, which our code is going to jump back later once we call the JR
RA instruction in our subroutine we just jumped right now. So, if you assembled the above 
PrintXY code, you should get this:



Wow, astonishing result. The text is printed always, because our subroutine is looped all 
the time (behavior scripts). 

Now, we want to mix this and start a

Chapter 12: Floating-Point Operations
After you're known to the basics of MIPS now, we now go a bit deeper and learn about 
floating-point operations. First off, what is a floating-point number? In mathematical 
language it's described as an approximation representation of a real number. Floating-
point numbers support a wide range of values. Usually, numbers are represented 
approximately to a fixed number (such like 2.6 or 12345.25) of significant digits and scaled
using an exponent. (You all should know what an exponent is. 2³. Base = 2, exp = 3) Now, 
let's say you want to make a program which describes the dimensions on a computer chip 
(let's say around 0.000000010 to 0.000010000 meters and also the speed of electrical 
signals, like 100000000.0 to 300000000.0 meters per second. Of course, you could use 
fixed-point representations like 2390 for example to represent 23.45. This is actually the 
same as using fixed point notation. It's always assumed that the binary point lies between 
two of the bits. But now, how would we deal with values like above? An ASM programmer 
would have to remember where the decimal point really is in each number. 

Now, the essential point of a floating-point representation is simply that a fixed number of 
bits are used (32 or 64) and that binary point is “floating” to where it is needed in those 
bits. So, floating-point expressions can represent numbers that are very small and 
numbers that are very large. When such a floating-point operation is performed, the binary 
point floats to the correct position of the result. Therefore, the programmer does not need 
to keep track of it.

And we move on to the actual problem. Until the year 1985, each machine had it's very 
own type of floating-points. This didn't only cause a lot of problems, but also made 
compatibility for compilers and many other stuff harder. To solve this problem, the Institue 
of Electrical and Electronic Engineers created a so-called standard (like ISO standards) 
and released it 1985 after many, many years of development. This standard, fortunately, 
became the actual standard and many processors since then follow this standard. The 
idea basically comes from the scientific notation for numbers:

1.38502 x 10³

We call the first digit, the so-called “mantissa”. It has a decimal point after the first digit. 
And the above expression simply means:

1.38502 x 1000 = 1385.02

The decimal point floats to where it belongs. 


