
Document Number: MD00087
Revision 0.95

March 12, 2001

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

MIPS64™ Architecture For Programmers
Volume II: The MIPS64™ Instruction Set

Copyright © 2000-2001 MIPS Technologies, Inc. All rights reserved.

Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any
copying, modifyingor use of this information (in whole or in part) which is not expressly permitted in writing by MIPS
Technologies or a contractually-authorized third party is strictly prohibited. At a minimum, this information is protected
under unfair competition laws and the expression of the information contained herein is protected under federal
copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in
this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
the application or use of this information. Any license under patent rights or any other intellectual property rights owned
by MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third
party in a separate license agreement between the parties.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or any contractually-authorized third party.

MIPS, R3000, R4000, R5000, R8000 and R10000 are among the registered trademarks of MIPS Technologies, Inc., and
R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MDMX,
SmartMIPS, 4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, EC, MGB, SOC-it, SEAD, YAMON, ATLAS, JALGO, CoreLV
and MIPS-based are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

MIPS64™ Architecture For Programmers Volume II, Revision 0.95

.

.
.
.
.
.
.
.
.
..
..
.
.
.
.
.
.
.
.
..
.
.
.
.

Table of Contents

Chapter 1 About This Book ..1
1.1 Typographical Conventions ...1

1.1.1 Italic Text ...1
1.1.2 Bold Text ...1
1.1.3 Courier Text ...1

1.2 UNPREDICTABLE and UNDEFINED ..2
1.2.1 UNPREDICTABLE...2
1.2.2 UNDEFINED...2

1.3 Special Symbols in Pseudocode Notation..2
1.4 For More Information ..5

Chapter 2 Guide to the Instruction Set ..7
2.1 Understanding the Instruction Fields ...7

2.1.1 Instruction Fields ...8
2.1.2 Instruction Descriptive Name and Mnemonic ...9
2.1.3 Format Field...9
2.1.4 Purpose Field ...10
2.1.5 Description Field..10
2.1.6 Restrictions Field ...10
2.1.7 Operation Field ..11
2.1.8 Exceptions Field...11
2.1.9 Programming Notes and Implementation Notes Fields ...11

2.2 Operation Section Notation and Functions ..12
2.2.1 Instruction Execution Ordering..12
2.2.2 Pseudocode Functions..12

2.3 Op and Function Subfield Notation ...21
2.4 FPU Instructions ..21

Chapter 3 The MIPS64™ Instruction Set ...23
3.1 Compliance and Subsetting..23
3.2 Alphabetical List of Instructions..23
ABS.fmt ..34
ADD..35
ADD.fmt ...37
ADDI...38
ADDIU..39
ADDU...40
ALNV.PS..41
AND..44
ANDI...45
B...46
BAL..47
BC1F...48
BC1FL ..50
BC1T...52
BC1TL ..54
BC2F...56
BC2FL ..57
BC2T...59
BC2TL ..60
BEQ..62
BEQL ..63
BGEZ ..65
BGEZAL...66
BGEZALL ..67
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 i

.

.

.

.

.

.
.
.
.
..
.
.
.
.
.

BGEZL..69
BGTZ ..71
BGTZL..72
BLEZ...74
BLEZL ..75
BLTZ...77
BLTZAL ...78
BLTZALL...79
BLTZL ..81
BNE..83
BNEL ..84
BREAK...86
C.cond.fmt...87
CACHE...92
CEIL.L.fmt..98
CEIL.W.fmt ...100
CFC1..101
CFC2..103
CLO..104
CLZ..105
COP2..107
CTC1..108
CTC2..111
CVT.D.fmt ...112
CVT.L.fmt..113
CVT.PS.S...114
CVT.S.fmt..116
CVT.S.PL...117
CVT.S.PU ..119
CVT.W.fmt ..120
DADD..121
DADDI...122
DADDIU..123
DADDU ...124
DCLO...125
DCLZ ...126
DDIV..127
DDIVU...128
DERET...129
DIV ..131
DIV.fmt..133
DIVU..134
DMFC0 ..135
DMFC1 ..136
DMFC2 ..137
DMTC0..138
DMTC1..139
DMTC2..140
DMULT ...141
DMULTU ..142
DSLL..143
DSLL32..144
DSLLV...145
DSRA...146
DSRA32...147
DSRAV..148
DSRL ...149
DSRL32 ...150
DSRLV ..151
DSUB...152
DSUBU..153
ERET..154
FLOOR.L.fmt ..155
FLOOR.W.fmt ...157
J..158
JAL...159
ii MIPS64™ Architecture For Programmers Volume II, Revision 0.95

JALR..160
JR ...162
LB ..164
LBU..165
LD ..166
LDC1..167
LDC2..168
LDL..169
LDR..171
LDXC1...174
LH ..175
LHU ...176
LL...177
LLD..179
LUI...181
LUXC1...182
LW ...183
LWC1...184
LWC2...185
LWL...186
LWR...189
LWU ..193
LWXC1..194
MADD ...195
MADD.fmt...197
MADDU ..199
MFC0 ...200
MFC1 ...201
MFC2 ...202
MFHI..203
MFLO ..204
MOV.fmt..205
MOVF..206
MOVF.fmt ...207
MOVN ...209
MOVN.fmt...210
MOVT..212
MOVT.fmt ...213
MOVZ..215
MOVZ.fmt ...216
MSUB ..218
MSUB.fmt..219
MSUBU ...221
MTC0...222
MTC1...223
MTC2...224
MTHI ...225
MTLO ..226
MUL...227
MUL.fmt ..228
MULT ..229
MULTU ...230
NEG.fmt...231
NMADD.fmt..232
NMSUB.fmt...234
NOP..236
NOR ...237
OR..238
ORI...239
PLL.PS...240
PLU.PS ..241
PREF..242
PREFX...246
PUL.PS ..247
PUU.PS ..248
RECIP.fmt..249
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 iii

ROUND.L.fmt ...251
ROUND.W.fmt ..253
RSQRT.fmt ..255
SB...257
SC...258
SCD..261
SDi ...264
SDBBP...265
SDC1..266
SDC2..267
SDL..268
SDR..271
SDXC1...274
SH ..275
SLL ..276
SLLV..277
SLT ..278
SLTI ...279
SLTIU ..280
SLTU..281
SQRT.fmt...282
SRA..283
SRAV...284
SRL ..285
SRLV ...286
SSNOP...287
SUB..288
SUB.fmt ...289
SUBU...290
SUXC1...291
SW..292
SWC1...293
SWC2...294
SWL ...295
SWR...297
SWXC1..299
SYNC...300
SYSCALL..304
TEQ..305
TEQI ..306
TGE..307
TGEI ..308
TGEIU..309
TGEU...310
TLBP..311
TLBR ...312
TLBWI...314
TLBWR..316
TLT ..318
TLTI...319
TLTIU..320
TLTU ...321
TNE..322
TNEI ..323
TRUNC.L.fmt ..325
TRUNC.W.fmt...327
WAIT ...329
XOR ...331
XORI..332

Appendix A Revision History ...333
iv MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 v

List of Figures

Figure 2-1: Example of Instruction Description ..8
Figure 2-2: Example of Instruction Fields ...9
Figure 2-3: Example of Instruction Descriptive Name and Mnemonic ...9
Figure 2-4: Example of Instruction Format..9
Figure 2-5: Example of Instruction Purpose ..10
Figure 2-6: Example of Instruction Description ..10
Figure 2-7: Example of Instruction Restrictions ..11
Figure 2-8: Example of Instruction Operation ...11
Figure 2-9: Example of Instruction Exception...11
Figure 2-10: Example of Instruction Programming Notes...12
Figure 2-11: COP_LW Pseudocode Function..13
Figure 2-12: COP_LD Pseudocode Function...13
Figure 2-13: COP_SW Pseudocode Function..13
Figure 2-14: COP_SD Pseudocode Function...14
Figure 2-15: AddressTranslation Pseudocode Function ..14
Figure 2-16: LoadMemory Pseudocode Function..15
Figure 2-17: StoreMemory Pseudocode Function ...15
Figure 2-18: Prefetch Pseudocode Function ..16
Figure 2-19: ValueFPR Pseudocode Function ...17
Figure 2-20: StoreFPR Pseudocode Function ..18
Figure 2-21: SyncOperation Pseudocode Function..19
Figure 2-22: SignalException Pseudocode Function ...19
Figure 2-23: NullifyCurrentInstruction PseudoCode Function..19
Figure 2-24: CoprocessorOperation Pseudocode Function..19
Figure 2-25: JumpDelaySlot Pseudocode Function ...20
Figure 2-26: NotWordValue Pseudocode Function ...20
Figure 2-27: FPConditionCode Pseudocode Function...20
Figure 2-28: SetFPConditionCode Pseudocode Function..21
Figure 3-1: Example of an ALNV.PS Operation ...41
Figure 3-2: Usage of Address Fields to Select Index and Way ...93
Figure 3-3: Unaligned Doubleword Load Using LDL and LDR...169
Figure 3-4: Bytes Loaded by LDL Instruction...170
Figure 3-5: Unaligned Doubleword Load Using LDR and LDL ...171
Figure 3-6: Bytes Loaded by LDR Instruction...172
Figure 3-7: Unaligned Word Load Using LWL and LWR ..186
Figure 3-8: Bytes Loaded by LWL Instruction..187
Figure 3-9: Unaligned Word Load Using LWL and LWR ..190
Figure 3-10: Bytes Loaded by LWL Instruction..191
Figure 3-11: Unaligned Doubleword Store With SDL and SDR...268
Figure 3-12: Bytes Stored by an SDL Instruction..269
Figure 3-13: Unaligned Doubleword Store With SDR and SDL...271
Figure 3-14: Bytes Stored by an SDR Instruction..272
Figure 3-15: Unaligned Word Store Using SWL and SWR ..295
Figure 3-16: Bytes Stored by an SWL Instruction...296
Figure 3-17: Unaligned Word Store Using SWR and SWL ..297
Figure 3-18: Bytes Stored by SWR Instruction ...298

vi MIPS64™ Architecture For Programmers Volume II, Revision 0.95

List of Tables

Table 1-1: Symbols Used in Instruction Operation Statements ..3
Table 2-1: AccessLength Specifications for Loads/Stores ...16
Table 3-1: CPU Arithmetic Instructions ...24
Table 3-2: CPU Branch and Jump Instructions...25
Table 3-3: CPU Instruction Control Instructions ..25
Table 3-4: CPU Load, Store, and Memory Control Instructions ..26
Table 3-5: CPU Logical Instructions ..27
Table 3-6: CPU Move Instructions ...27
Table 3-7: CPU Shift Instructions...27
Table 3-8: CPU Trap Instructions ...28
Table 3-9: Obsolete CPU Branch Instructions..28
Table 3-10: FPU Arithmetic Instructions..29
Table 3-11: FPU Branch Instructions..29
Table 3-12: FPU Compare Instructions ..29
Table 3-13: FPU Convert Instructions ..29
Table 3-14: FPU Load, Store, and Memory Control Instructions...30
Table 3-15: FPU Move Instructions..31
Table 3-16: Obsolete FPU Branch Instructions ..31
Table 3-17: Coprocessor Branch Instructions...31
Table 3-18: Coprocessor Execute Instructions..31
Table 3-19: Coprocessor Load and Store Instructions ..32
Table 3-20: Coprocessor Move Instructions ...32
Table 3-21: Obsolete Coprocessor Branch Instructions..32
Table 3-22: Privileged Instructions ...32
Table 3-23: EJTAG Instructions ...33
Table 3-24: FPU Comparisons Without Special Operand Exceptions ...88
Table 3-25: FPU Comparisons With Special Operand Exceptions for QNaNs..89
Table 3-26: Usage of Effective Address ...92
Table 3-27: Encoding of Bits[17:16] of CACHE Instruction ...93
Table 3-28: Encoding of Bits [20:18] of the CACHE Instruction ..94
Table 3-29: Values of thehint Field for the PREF Instruction ...243

64™

of the

not

by

ion
Chapter 1

About This Book

The MIPS64™ Architecture For Programmers Volume II comes as a multi-volume set.

• Volume I describes conventions used throughout the document set, and provides an introduction to the MIPS
Architecture

• Volume II provides detailed descriptions of each instruction in the MIPS64™ instruction set

• Volume III describes the MIPS64™ Privileged Resource Architecture which defines and governs the behavior
privileged resources included in a MIPS64™ processor implementation

• Volume IV-a describes the MIPS16™ Application-Specific Extension to the MIPS64™ Architecture

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64™ Architecture

• Volume IV-c describes the MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture

• Volume IV-d describes the SmartMIPS™Application-Specific Extension to the MIPS32™ Architecture and is
applicable to the MIPS64™ document set

1.1 Typographical Conventions

This section describes the use ofitalic, bold andcourier fonts in this book.

1.1.1 Italic Text

• is used foremphasis

• is used forbits, fields, registers, that are important from a software perspective (for instance, address bits used
software, and programmable fields and registers), and variousfloating point instruction formats, such asS, D, andPS

• is used for the memory access types, such ascached anduncached

1.1.2 Bold Text

• represents a term that is beingdefined

• is used forbits andfields that are important from a hardware perspective (for instance,register bits, which are not
programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance,5..1 indicates numbers 5 through 1

• is used to emphasizeUNPREDICTABLE andUNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruct
pseudocode.
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 1

Chapter 1 About This Book

ions
.

, or

ated,

ry

 is

process

here is
ocessor

tation
1.2 UNPREDICTABLE and UNDEFINED

The termsUNPREDICTABLE andUNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases.UNDEFINED behavior or operations can occur only as the result of executing instruct
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register)
Unprivileged software can never causeUNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can causeUNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener
it is UNPREDICTABLE . UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generatingUNPREDICTABLE results must not depend on any data source (memo
or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
inaccessible in the current processor mode. For example,UNPREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction.UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue.UNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which t
no exit other than powering down the processor). The assertion of any of the reset signals must restore the pr
to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language no
resembling Pascal. Special symbols used in the pseudocode notation are listed inTable 1-1.
2 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

1.3 Special Symbols in Pseudocode Notation

ary
 is

ness
Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed byy copies of the single-bit valuex

b#n
A constant valuen in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the bin
value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix
omitted, the default base is 10.

xy..z
Selection of bitsy throughzof bit stringx. Little-endian bit notation (rightmost bit is 0) is used. Ify is less than
z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

∗, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose registerx. The content ofGPR[0] is always zero.

FPR[x] Floating Point operand registerx

FCC[CC] Floating Point condition code CC.FCC[0] has the same value asCOC[1].

FPR[x] Floating Point (Coprocessor unit 1), general registerx

CPR[z,x,s] Coprocessor unitz, general registerx, select s

CCR[z,x] Coprocessor unitz, control registerx

COC[z] Coprocessor unitz condition signal

Xlat[x] Translation of the MIPS16 GPR numberx into the corresponding 32-bit GPR number

BigEndianMem
Endian mode as configured at chip reset (0→Little-Endian, 1→ Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endian
of Kernel and Supervisor mode execution.
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 3

Chapter 1 About This Book

, and

turn

e

me

led

h an
n

t
icular

n
g a

tion)

sical

ymbol

-bit
PRs

nch or

 not

ment
e

BigEndianCPU
The endianness for load and store instructions (0→ Little-Endian, 1→ Big-Endian). In User mode, this
endianness may be switched by setting theREbit in theStatusregister. Thus, BigEndianCPU may be computed
as (BigEndianMem XOR ReverseEndian).

ReverseEndian
Signal to reverse the endianness of load and store instructions. This feature is available in User mode only
is implemented by setting theREbit of theStatusregister. Thus, ReverseEndian may be computed as (SRREand
User mode).

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write.LLbit is set
when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other CPU
operation, when a store to the location would no longer be atomic. In particular, it is cleared by exception re
instructions.

I :,
I+n :,
I-n :

This occurs as a prefix toOperation description lines and functions as a label. It indicates the instruction tim
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a ti
label ofI . Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections labe
with the instruction time, relative to the current instructionI , in which the effect of that pseudocode appears to
occur. For example, an instruction may have a result that is not available until after the next instruction. Suc
instruction has the portion of the instruction operation description that writes the result register in a sectio
labeledI+1.

The effect of pseudocode statements for the current instruction labelledI+1 appears to occur “at the same time”
as the effect of pseudocode statements labeledI for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for differen
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a part
order of evaluation between such sections.

PC

TheProgram Countervalue. During the instruction time of an instruction, this is the address of the instructio
word. The address of the instruction that occurs during the next instruction time is determined by assignin
value toPC during an instruction time. If no value is assigned toPC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16 instruc
or 4 before the next instruction time. A taken branch assigns the target address to thePCduring the instruction
time of the instruction in the branch delay slot.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phy
address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

SEGBITS
The number of virtual address bits implemented in a segment of the address space is represented by the s
SEGBITS. As such, if 40 virtual address bits are implemented in a segment, the size of the segment is 2SEGBITS

= 240 bytes.

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32 32
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-bit F
in which 64-bit data types are stored in any FPR.

In MIPS32 implementations,FP32RegistersModeis always a 0. MIPS64 implementations have a compatibility
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32RegisterModeis computed from the FR bit in theStatusregister. If this bit is a 0, the processor operates
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value ofFP32RegistersMode is computed from the FR bit in theStatus register.

InstructionInBranchD
elaySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a bra
jump. This condition reflects thedynamic state of the instruction, not thestatic state. That is, the value is false
if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is
executed in the delay slot of a branch or jump.

SignalException(exce
ption, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argu
parameter as an exception-specific argument). Control does not return from this pseudocode function - th
exception is signaled at the point of the call.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
4 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

1.4 For More Information

URL:
1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS

http://www.mips.com

Comments or questions on the MIPS64™ Architecture or this document should be directed to

Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 5

Chapter 1 About This Book
6 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

etical
Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphab
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2-1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 8

• “Instruction Descriptive Name and Mnemonic” on page 9

• “Format Field” on page 9

• “Purpose Field” on page 10

• “Description Field” on page 10

• “Restrictions Field” on page 10

• “Operation Field” on page 11

• “Exceptions Field” on page 11

• “Programming Notes and Implementation Notes Fields” on page 11
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 7

Chapter 2 Guide to the Instruction Set

wing

f

Figure 2-1 Example of Instruction Description

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follo
rules are followed:

0

Example Instruction Name EXAMPLE

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 EXAMPLE

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Format: EXAMPLE rd, rs,rt MIPS32

Purpose: to execute an EXAMPLE op

Description: rd ← rs exampleop rt
This section describes the operation of the instruction in text, tables, and
illustrations. It includes information that would be difficult to encode in the
Operation section.

Restrictions:
This section lists any restrictions for the instruction. This can include values of the
instruction encoding fields such as register specifiers, operand values, operand
formats, address alignment, instruction scheduling hazards, and type of memory
access for addressed locations.

Operation:
/* This section describes the operation of an instruction in a */
/* high-level pseudo-language. It is precise in ways that the */
/* Description section is not, but is also missing information */
/* that is hard to express in pseudocode.*/

temp ← GPR[rs] exampleop GPR[rt]
GPR[rd] ← sign_extend(temp 31..0)

Exceptions:
A list of exceptions taken by the instruction

Programming Notes:
Information useful to programmers, but not necessary to describe the operation o
the instruction

Implementation Notes:
Like Programming Notes, except for processor implementors

Instruction Mnemonic
and Descriptive Name

Instruction encoding
constant and variable
field names and values

Architecture level at
which instruction was
defined/redefined and
assembler format(s) for
each definition

Short description

Symbolic description

Full description of
instruction operation

Restrictions on
instruction and
operands

High-level language
description of instruction
operation

Exceptions that
instruction can cause

Notes for programmers

Notes for implementors
8 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

2.1 Understanding the Instruction Fields

ed are
ded
e
vious
xtended

The
at which
as

eses.

ed data
• The values of constant fields and theopcode names are listed in uppercase (SPECIAL and ADD inFigure 2-2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt andrd in Figure 2-2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 inFigure 2-2). If
such fields are set to non-zero values, the operation of the processor isUNPREDICTABLE .

Figure 2-2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown inFigure
2-3.

Figure 2-3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defin
given in theFormatfield. If the instruction definition was later extended, the architecture levels at which it was exten
and the assembler formats for the extended definition are shown in their order of extension (for an example, se
C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre
levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the e
architecture.

Format: ADD rd, rs, rt MIPS32 (MIPS I)

Figure 2-4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters.
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level
the instruction was first defined, for example “MIPS32” is shown at the right side of the page. If the instruction w
originally defined in the MIPS I through MIPS V levels of the architecture, that information is enclosed in parenth

There can be more than one assembler format for each architecture level. Floating point operations on formatt
show an assembly format with the actual assembler mnemonic for each valid value of thefmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADD

100000

6 5 5 5 5 6

Add Word ADD
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 9

Chapter 2 Guide to the Instruction Set

s (once

n.

 and

ription

one

ards for
The assembler format lines sometimes include parenthetical comments to help explain variations in the format
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Purpose:

To add 32-bit integers. If an overflow occurs, then trap.

Figure 2-5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of theDescription
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operatio

Description: rd ← rs + rt

The 32-bit word value in GPRrt is added to the 32-bit value in GPRrs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified
an Integer Overflow exception occurs

• If the addition does not overflow, the 32-bit result is signed-extended and placed into GPRrd

Figure 2-6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This desc
complements the high-level language description in theOperation section.

This section uses acronyms for register descriptions. “GPRrt” is CPU general-purpose register specified by the
instruction fieldrt. “FPR fs” is the floating point operand register specified by the instruction fieldfs. “CP1 registerfd”
is the coprocessor 1 general register specified by the instruction fieldfd. “FCSR” is the floating pointControl /Status
register.

2.1.6 Restrictions Field

TheRestrictionsfield documents any possible restrictions that may affect the instruction. Most restrictions fall into
of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD.fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see DADD)

• Valid operand formats (for example, see floating point ADD.fmt)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline haz
which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)
10 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

2.1 Understanding the Instruction Fields

f the

tation

tion of a
ship
Restrictions:

If either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result o
operation is UNPREDICTABLE.

Figure 2-7 Example of Instruction Restrictions

2.1.7 Operation Field

TheOperation field describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. This formal description complements theDescription section; it is not complete in itself because
many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (GPR[rs] 31||GPR[rs] 31..0) + (GPR[rt] 31||GPR[rt] 31..0)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← sign_extend(temp 31..0)
endif

Figure 2-8 Example of Instruction Operation

See Section 2.2 , "Operation Section Notation and Functions" on page 12 for more information on the formal no
used here.

2.1.8 Exceptions Field

TheExceptionsfield lists the exceptions that can be caused byOperationof the instruction. It omits exceptions that can
be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by
asynchronous external events such as an Interrupt. Although a Bus Error exception may be caused by the opera
load or store instruction, this section does not list Bus Error for load and store instructions because the relation
between load and store instructions and external error indications, like Bus Error, are dependent upon the
implementation.

Exceptions:

Integer Overflow

Figure 2-9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in theExceptions section.

2.1.9 Programming Notes and Implementation Notes Fields
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 11

Chapter 2 Guide to the Instruction Set

ot

. Specific

ed

ode more
include

essor
nd how

into the

a load
ord in
TheNotes sections contain material that is useful for programmers and implementors, respectively, but that is n
necessary to describe the instruction and does not belong in the description sections.

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

Figure 2-10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, theOperationsection uses a high-level language notation to describe the operation
performed by each instruction. Special symbols used in the pseudocode are described in the previous chapter
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 12

• “Pseudocode Functions” on page 12

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in theOperations section are executed sequentially (except as constrain
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudoc
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
the following:

• “Coprocessor General Register Access Functions” on page 12

• “Load Memory and Store Memory Functions” on page 14

• “Access Functions for Floating Point Registers” on page 16

• “Miscellaneous Functions” on page 18

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coproc
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it a
a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted
functions described in this section.

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during
word operation. The action is coprocessor-specific. The typical action would be to store the contents of memw
coprocessor general registerrt.
12 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

2.2 Operation Section Notation and Functions

during
nts of

eration.

f the
COP_LW (z, rt, memword)
z: The coprocessor unit number
rt : Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

Figure 2-11 COP_LW Pseudocode Function

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the conte
memdouble in coprocessor general registerrt.

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt : Coprocessor general register specifier
memdouble : 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD

Figure 2-12 COP_LD Pseudocode Function

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word op
The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general registerrt.

dataword ← COP_SW (z, rt)
z: The coprocessor unit number
rt : Coprocessor general register specifier
dataword : 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

Figure 2-13 COP_SW Pseudocode Function

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store
doubleword operation. The action is coprocessor-specific. The typical action would be to supply the contents o
low-order doubleword in coprocessor general registerrt.
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 13

Chapter 2 Guide to the Instruction Set

st byte
dian

irtual
e
f
ly from

gorithm,

s
.
 the
not
datadouble ← COP_SD (z, rt)
z: The coprocessor unit number
rt : Coprocessor general register specifier
datadouble : 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

Figure 2-14 COP_SD Pseudocode Function

2.2.2.2 Load Memory and Store Memory Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smalle
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-en
ordering this is the least-significant byte.

In theOperation pseudocode for load and store operations, the following functions summarize the handling of v
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in th
AccessLengthfield. The valid constant names and values are shown inTable 2-1. The bytes within the addressed unit o
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined direct
theAccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cache coherence al
describing the mechanism used to resolve the memory reference.

Given the virtual addressvAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the reference. If the virtual addres
is in one of the unmapped address spaces, the physical address andCCAare determined directly by the virtual address
If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU determines
physical address and access type; if the required translation is not present in the TLB or the desired access is
permitted, the function fails and an exception is taken.

(pAddr, CCA) ← AddressTranslation (vAddr, IorD, LorS)

/* pAddr : physical address */
/* CCA: Cache Coherence Algorithm, the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr : virtual address */
/* IorD : Indicates whether access is for INSTRUCTION or DATA */
/* LorS : Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

Figure 2-15 AddressTranslation Pseudocode Function

LoadMemory

The LoadMemory function loads a value from memory.
14 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

2.2 Operation Section Notation and Functions

type
mory

ntire

ry)

t are

d.
This action uses cache and main memory as specified in both the Cache Coherence Algorithm (CCA) and the access
(IorD) to find the contents ofAccessLengthmemory bytes, starting at physical locationpAddr. The data is returned in a
fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address and the
AccessLengthindicate which of the bytes withinMemElemneed to be passed to the processor. If the memory access
of the reference isuncached, only the referenced bytes are read from memory and marked as valid within the me
element. If the access type iscachedbut the data is not present in cache, an implementation-specificsizeandalignment
block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this block is the e
memory element.

MemElem ← LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cache Coherence Algorithm, the method used to access caches */
/* and memory and resolve the reference */

/* AccessLength : Length, in bytes, of access */
/* pAddr : physical address */
/* vAddr : virtual address */
/* IorD : Indicates whether access is for Instructions or Data */

endfunction LoadMemory

Figure 2-16 LoadMemory Pseudocode Function

StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical locationpAddrusing the memory hierarchy (data caches and main memo
as specified by the Cache Coherence Algorithm (CCA). TheMemElem contains the data for an aligned, fixed-width
memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the bytes tha
actually stored to memory need be valid. The low-order two (or three) bits ofpAddrand theAccessLengthfield indicate
which of the bytes within theMemElem data should be stored; only these bytes in memory will actually be change

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength : Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr : physical address */
/* vAddr : virtual address */

endfunction StoreMemory

Figure 2-17 StoreMemory Pseudocode Function

Prefetch

The Prefetch function prefetches data from memory.
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 15

Chapter 2 Guide to the Instruction Set

crease

erpreted
load
Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may in
performance but must not change the meaning of the program or alter architecturally visible state.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr : physical address */
/* vAddr : virtual address */
/* DATA: Indicates that access is for DATA */
/* hint : hint that indicates the possible use of the data */

endfunction Prefetch

Figure 2-18 Prefetch Pseudocode Function

Table 2-1 lists the data access lengths and their labels for loads and stores.

2.2.2.3 Access Functions for Floating Point Registers

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are int
to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
(uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Table 2-1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)
16 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

2.2 Operation Section Notation and Functions

o CP1
ctions.
fferent
value ← ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR ← UNPREDICTABLE32 || FPR[fpr] 31..0

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr 0 ≠ 0) then
valueFPR ← UNPREDICTABLE

else
valueFPR ← FPR[fpr +1] 31..0 || FPR[fpr] 31..0

endif
else

valueFPR ← FPR[fpr]
endif

L, PS, OB, QH:
if (FP32RegistersMode = 0) then

valueFPR ← UNPREDICTABLE
else

valueFPR ← FPR[fpr]
endif

DEFAULT:
valueFPR ← UNPREDICTABLE

endcase
endfunction ValueFPR

Figure 2-19 ValueFPR Pseudocode Function

StoreFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored int
registers by a computational or move operation. This binary representation is visible to store or move-from instru
Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a di
format.
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 17

Chapter 2 Guide to the Instruction Set
StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr] ← UNPREDICTABLE32 || value 31..0

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr 0 ≠ 0) then
UNPREDICTABLE

else
FPR[fpr] ← UNPREDICTABLE32 || value 31..0
FPR[fpr +1] ← UNPREDICTABLE32 || value 63..32

endif
else

FPR[fpr] ← value
endif

L, PS, OB, QH:
if (FP32RegistersMode = 0) then

UNPREDICTABLE
else

FPR[fpr] ← value
endif

endcase

endfunction StoreFPR

Figure 2-20 StoreFPR Pseudocode Function

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated bystype occur in the same order for all
processors.
18 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

2.2 Operation Section Notation and Functions

a return

 its
SyncOperation(stype)

/* stype : Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

Figure 2-21 SyncOperation Pseudocode Function

SignalException

The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees
from this function call.

SignalException(Exception, argument)

/* Exception : The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

Figure 2-22 SignalException Pseudocode Function

NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted. For branch-likely instructions, nullification kills the instruction in the delay slot during
execution.

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

Figure 2-23 NullifyCurrentInstruction PseudoCode Function

CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun : Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

Figure 2-24 CoprocessorOperation Pseudocode Function
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 19

Chapter 2 Guide to the Instruction Set

TRUE
L,

ord
JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the four PC-relative instructions. The function returns
if the instruction atvAddr is executed in a jump delay slot. A jump delay slot always immediately follows a JR, JA
JALR, or JALX instruction.

JumpDelaySlot(vAddr)

/* vAddr :Virtual address */

endfunction JumpDelaySlot

Figure 2-25 JumpDelaySlot Pseudocode Function

NotWordValue

The NotWordValue function returns a boolean value that determines whether the 64-bit value contains a valid w
(32-bit) value. Such a value has bits 63..32 equal to bit 31.

result ← NotWordValue(value)

/* result: True if the value is not a correct sign-extended word value; */
/* False otherwise */

/* value: A 64-bit register value to be checked */

NotWordValue ← value 63..32 ≠ (value 31) 32

endfunction NotWordValue

Figure 2-26 NotWordValue Pseudocode Function

FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

tf ←FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode ← FCSR23

else
FPConditionCode ← FCSR24+cc

endif

endfunction FPConditionCode

Figure 2-27 FPConditionCode Pseudocode Function

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.
20 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

2.3 Op and Function Subfield Notation

is
,
tains

 in

 For
to a

S16
SetFPConditionCode(cc)
if cc = 0 then

FCSR ← FCSR31..24 || tf || FCSR 22..0
else

FCSR ← FCSR31..25+cc || tf || FCSR 23+cc..0
endif

endfunction SetFPConditionCode

Figure 2-28 SetFPConditionCode Pseudocode Function

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfieldsopand functioncan have constant 5- or 6-bit values. When reference
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction
op=COP1 andfunction=ADD. In other cases, a single field has both fixed and variable subfields, so the name con
both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such asfs, ft,
immediate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown
uppercase.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions.
example,rs=basein the format for load and store instructions. Such an alias is always lowercase since it refers
variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIP
instructions.

See Section 2.3 , "Op and Function Subfield Notation" on page 21 for a description of theop andfunction subfields.
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 21

Chapter 2 Guide to the Instruction Set
22 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

in this
n
 to the

.

es are

uture
 that are

ASE is

ASE

e the

ow
Chapter 3

The MIPS64™ Instruction Set

3.1 Compliance and Subsetting

To be compliant with the MIPS64 Architecture, designs must implement a set of required features, as described
document set. To allow flexibility in implementations, the MIPS64 Architecture does provide subsetting rules. A
implementation that follows these rules is compliant with the MIPS64 Architecture as long as it adheres strictly
rules, and fully implements the remaining instructions.

The instruction set subsetting rules are as follows:

• All CPU instructions must be implemented - no subsetting is allowed.

• The FPU and related support instructions, including the MOVF and MOVT CPU instructions, may be omitted
Software may determine if an FPU is implemented by checking the state of the FP bit in theConfig1CP0 register. If
the FPU is implemented, the paired single (PS) format is optional. Software may determine which FPU data typ
implemented by checking the appropriate bit in theFIR CP1 register. The following allowable FPU subsets are
compliant with the MIPS64 architecture:

– No FPU

– FPU with S, D, W, and L formats and all supporting instructions

– FPU with S, D, PS, W, and L formats and all supporting instructions

• Coprocessor 2 is optional and may be omitted. Software may determine if Coprocessor 2 is implemented by
checking the state of the C2 bit in theConfig1 CP0 register. If Coprocessor 2 is implemented, the Coprocessor 2
interface instructions (BC2, CFC2, COP2, CTC2, DMFC2, DMTC2, LDC2, LWC2, MFC2, MTC2, SDC2, and
SWC2) may be omitted on an instruction by instruction basis.

• Instruction fields that are marked “Reserved” or shown as “0” in the description of that field are reserved for f
use by the architecture and are not available to implementations. Implementations may only use those fields
explicitly reserved for implementation dependent use.

• Supported ASEs are optional and may be subsetted out. If most cases, software may determine if a supported
implemented by checking the appropriate bit in theConfig1 or Config3 CP0 register. If they are implemented, they
must implement the entire ISA applicable to the component, or implement subsets that are approved by the
specifications.

• If any instruction is subsetted out based on the rules above, an attempt to execute that instruction must caus
appropriate exception (typically Reserved Instruction or Coprocessor Unusable).

Supersetting of the MIPS64 ISA is only allowed by adding functions to theSPECIAL2 major opcode or by adding
instructions to support Coprocessor 2.

3.2 Alphabetical List of Instructions

Table 3-1throughTable 3-23provide a list of instructions grouped by category. Individual instruction descriptions foll
the tables, arranged in alphabetical order.
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 23

Chapter 3 The MIPS64™ Instruction Set
Table 3-1 CPU Arithmetic Instructions

Mnemonic Instruction

ADD Add Word

ADDI Add Immediate Word

ADDIU Add Immediate Unsigned Word

ADDU Add Unsigned Word

CLO Count Leading Ones in Word

CLZ Count Leading Zeros in Word

DADD Doubleword Add

DADDI Doubleword Add immediate

DADDIU Doubleword Add Immediate Unsigned

DADDU Doubleword Add Unsigned

DCLO Count Leading Ones in Doubleword

DCLZ Count Leading Zeros in Doubleword

DDIV Doubleword Divide

DDIVU Doubleword Divide Unsigned

DIV Divide Word

DIVU Divide Unsigned Word

DMULT Doubleword Multiply

DMULTU Doubleword Multiply Unsigned

DSUB Doubleword Subtract

DSUBU Doubleword Subtract Unsigned

MADD Multiply and Add Word to Hi, Lo

MADDU Multiply and Add Unsigned Word to Hi, Lo

MSUB Multiply and Subtract Word to Hi, Lo

MSUBU Multiply and Subtract Unsigned Word to Hi, Lo

MUL Multiply Word to GPR

MULT Multiply Word

MULTU Multiply Unsigned Word

SLT Set on Less Than
24 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

3.2 Alphabetical List of Instructions
SLTI Set on Less Than Immediate

SLTIU Set on Less Than Immediate Unsigned

SLTU Set on Less Than Unsigned

SUB Subtract Word

SUBU Subtract Unsigned Word

Table 3-2 CPU Branch and Jump Instructions

Mnemonic Instruction

B Unconditional Branch

BAL Branch and Link

BEQ Branch on Equal

BGEZ Branch on Greater Than or Equal to Zero

BGEZAL Branch on Greater Than or Equal to Zero and Link

BGTZ Branch on Greater Than Zero

BLEZ Branch on Less Than or Equal to Zero

BLTZ Branch on Less Than Zero

BLTZAL Branch on Less Than Zero and Link

BNE Branch on Not Equal

J Jump

JAL Jump and Link

JALR Jump and Link Register

JR Jump Register

Table 3-3 CPU Instruction Control Instructions

Mnemonic Instruction

NOP No Operation

SSNOP Superscalar No Operation

Table 3-1 CPU Arithmetic Instructions

Mnemonic Instruction
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 25

Chapter 3 The MIPS64™ Instruction Set
Table 3-4 CPU Load, Store, and Memory Control Instructions

Mnemonic Instruction

LB Load Byte

LBU Load Byte Unsigned

LD Load Doubleword

LDL Load Doubleword LEft

LDR Load Doubleword Right

LH Load Halfword

LHU Load Halfword Unsigned

LL Load Linked Word

LLD Load Linked Doubleword

LW Load Word

LWL Load Word Left

LWR Load Word Right

LWU Load Word Unsigned

PREF Prefetch

SB Store Byte

SC Store Conditional Word

SCD Store Conditional Doubleword

SD Store Doubleword

SDL Store Doubleword LEft

SDR Store Doubleword Right

SH Store Halfword

SW Store Word

SWL Store Word Left

SWR Store Word Right

SYNC Synchronize Shared Memory
26 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

3.2 Alphabetical List of Instructions
Table 3-5 CPU Logical Instructions

Mnemonic Instruction

AND And

ANDI And Immediate

LUI Load Upper Immediate

NOR Not Or

OR Or

ORI Or Immediate

XOR Exclusive Or

XORI Exclusive Or Immediate

Table 3-6 CPU Move Instructions

Mnemonic Instruction

MFHI Move From HI Register

MFLO Move From LO Register

MOVF Move Conditional on Floating Point False

MOVN Move Conditional on Not Zero

MOVT Move Conditional on Floating Point True

MOVZ Move Conditional on Zero

MTHI Move To HI Register

MTLO Move To LO Register

Table 3-7 CPU Shift Instructions

Mnemonic Instruction

DSLL Doubleword Shift Left Logical

DSLL32 Doubleword Shift Left Logical Plus 32

DSLLV Doubleword Shift Left Logical Variable

DSRA Doubleword Shift Right Arithmetic

DSRA32 Doubleword Shift Right Arithmetic Plus 32

DSRAV Doubleword Shift Right Arithmetic Variable

DSRL Doubleword Shift Right Logical

DSRL32 Doubleword Shift Right Logical Plus 32

DSRLV Doubleword Shift Right Logical Variable

SLL Shift Word Left Logical
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 27

Chapter 3 The MIPS64™ Instruction Set
SLLV Shift Word Left Logical Variable

SRA Shift Word Right Arithmetic

SRAV Shift Word Right Arithmetic Variable

SRL Shift Word Right Logical

SRLV Shift Word Right Logical Variable

Table 3-8 CPU Trap Instructions

Mnemonic Instruction

BREAK Breakpoint

SYSCALL System Call

TEQ Trap if Equal

TEQI Trap if Equal Immediate

TGE Trap if Greater or Equal

TGEI Trap if Greater of Equal Immediate

TGEIU Trap if Greater or Equal Immediate Unsigned

TGEU Trap if Greater or Equal Unsigned

TLT Trap if Less Than

TLTI Trap if Less Than Immediate

TLTIU Trap if Less Than Immediate Unsigned

TLTU Trap if Less Than Unsigned

TNE Trap if Not Equal

TNEI Trap if Not Equal Immediate

Table 3-9 Obsoletea CPU Branch Instructions

Mnemonic Instruction

BEQL Branch on Equal Likely

BGEZALL Branch on Greater Than or Equal to Zero and Link Likely

BGEZL Branch on Greater Than or Equal to Zero Likely

BGTZL Branch on Greater Than Zero Likely

BLEZL Branch on Less Than or Equal to Zero Likely

BLTZALL Branch on Less Than Zero and Link Likely

BLTZL Branch on Less Than Zero Likely

BNEL Branch on Not Equal Likely

Table 3-7 CPU Shift Instructions

Mnemonic Instruction
28 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

3.2 Alphabetical List of Instructions
a. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from
a future revision of the MIPS64 architecture.

Table 3-10 FPU Arithmetic Instructions

Mnemonic Instruction

ABS.fmt Floating Point Absolute Value

ADD.fmt Floating Point Add

DIV.fmt Floating Point Divide

MADD.fmt Floating Point Multiply Add

MSUB.fmt Floating Point Multiply Subtract

MUL.fmt Floating Point Multiply

NEG.fmt Floating Point Negate

NMADD.fmt Floating Point Negative Multiply Add

NMSUB.fmt Floating Point Negative Multiply Subtract

RECIP.fmt Reciprocal Approximation

RSQRT.fmt Reciprocal Square Root Approximation

SQRT Floating Point Square Root

SUB.fmt Floating Point Subtract

Table 3-11 FPU Branch Instructions

Mnemonic Instruction

BC1F Branch on FP False

BC1T Branch on FP True

Table 3-12 FPU Compare Instructions

Mnemonic Instruction

C.cond.fmt Floating Point Compare

Table 3-13 FPU Convert Instructions

Mnemonic Instruction

ALNV.PS Floating Point Align Variable

CEIL.L.fmt Floating Point Ceiling Convert to Long Fixed Point

CEIL.W.fmt Floating Point Ceiling Convert to Word Fixed Point

CVT.D.fmt Floating Point Convert to Double Floating Point

CVT.L.fmt Floating Point Convert to Long Fixed Point
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 29

Chapter 3 The MIPS64™ Instruction Set
CVT.PS.S Floating Point Convert Pair to Paired Single

CVT.S.PL Floating Point Convert Pair Lower to Single Floating Point

CVT.S.PU Floating Point Convert Pair Upper to Single Floating Point

CVT.S.fmt Floating Point Convert to Single Floating Point

CVT.W.fmt Floating Point Convert to Word Fixed Point

FLOOR.L.fmt Floating Point Floor Convert to Long Fixed Point

FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point

PLL.PS Pair Lower Lower

PLU.PS Pair Lower Upper

PUL.PS Pair Upper Lower

PUU.PS Pair Upper Upper

ROUND.L.fmt Floating Point Round to Long Fixed Point

ROUND.W.fmt Floating Point Round to Word Fixed Point

TRUNC.L.fmt Floating Point Truncate to Long Fixed Point

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point

Table 3-14 FPU Load, Store, and Memory Control Instructions

Mnemonic Instruction

LDC1 Load Doubleword to Floating Point

LDXC1 Load Doubleword Indexed to Floating Point

LUXC1 Load Doubleword Indexed Unaligned to Floating Point

LWC1 Load Word to Floating Point

LWXC1 Load Word Indexed to Floating Point

PREFX Prefetch Indexed

SDC1 Store Doubleword from Floating Point

SDXC1 Store Doubleword Indexed from Floating Point

SUXC1 Store Doubleword Indexed Unaligned from Floating Point

SWC1 Store Word from Floating Point

SWXC1 Store Word Indexed from Floating Point

Table 3-13 FPU Convert Instructions

Mnemonic Instruction
30 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

3.2 Alphabetical List of Instructions
Table 3-15 FPU Move Instructions

Mnemonic Instruction

CFC1 Move Control Word from Floating Point

CTC1 Move Control Word to Floating Point

DMFC1 Doubleword Move from Floating Point

DMTC1 Doubleword Move to Floating Point

MFC1 Move Word from Floating Point

MOV.fmt Floating Point Move

MOVF.fmt Floating Point Move Conditional on Floating Point False

MOVN.fmt Floating Point Move Conditional on Not Zero

MOVT.fmt Floating Point Move Conditional on Floating Point True

MOVZ.fmt Floating Point Move Conditional on Zero

MTC1 Move Word to Floating Point

Table 3-16 Obsoletea FPU Branch Instructions

a. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from
a future revision of the MIPS64 architecture.

Mnemonic Instruction

BC1FL Branch on FP False Likely

BC1TL Branch on FP True Likely

Table 3-17 Coprocessor Branch Instructions

Mnemonic Instruction

BC2F Branch on COP2 False

BC2T Branch on COP2 True

Table 3-18 Coprocessor Execute Instructions

Mnemonic Instruction

COP2 Coprocessor Operation to Coprocessor 2
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 31

Chapter 3 The MIPS64™ Instruction Set
Table 3-19 Coprocessor Load and Store Instructions

Mnemonic Instruction

LDC2 Load Doubleword to Coprocessor 2

LWC2 Load Word to Coprocessor 2

SDC2 Store Doubleword from Coprocessor 2

SWC2 Store Word from Coprocessor 2

Table 3-20 Coprocessor Move Instructions

Mnemonic Instruction

CFC2 Move Control Word from Coprocessor 2

CTC2 Move Control Word to Coprocessor 2

DMFC2 Doubleword Move from Coprocessor 2

DMTC2 Doubleword Move to Coprocessor 2

MFC2 Move Word from Coprocessor 2

MTC2 Move Word to Coprocessor 2

Table 3-21 Obsoletea Coprocessor Branch Instructions

a. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from
a future revision of the MIPS64 architecture.

Mnemonic Instruction

BC2FL Branch on COP2 False Likely

BC2TL Branch on COP2 True Likely

Table 3-22 Privileged Instructions

Mnemonic Instruction

CACHE Perform Cache Operation

DMFC0 Doubleword Move from Coprocessor 0

DMTC0 Doubleword Move to Coprocessor 0

ERET Exception Return

MFC0 Move from Coprocessor 0

MTC0 Move to Coprocessor 0
32 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

3.2 Alphabetical List of Instructions
TLBP Probe TLB for Matching Entry

TLBR Read Indexed TLB Entry

TLBWI Write Indexed TLB Entry

TLBWR Write Random TLB Entry

WAIT Enter Standby Mode

Table 3-23 EJTAG Instructions

Mnemonic Instruction

DERET Debug Exception Return

SDBBP Software Debug Breakpoint

Table 3-22 Privileged Instructions

Mnemonic Instruction
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 33

34 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ABS.fmt

Format: ABS.S fd, fs MIPS32 (MIPS I)
ABS.D fd, fs MIPS32 (MIPS I)
ABS.PS fd, fs MIPS64 (MIPS V)

Purpose:

To compute the absolute value of an FP value

Description: fd ← abs(fs)

The absolute value of the value in FPRfs is placed in FPRfd. The operand and result are values in formatfmt.
ABS.PS takes the absolute value of the two values in FPRfs independently, and ORs together any generated excep-
tions.

Cause bits are ORed into theFlag bits if no exception is taken.

This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt. If they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of ABS.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

ABS

000101

6 5 5 5 5 6

Floating Point Absolute Value ABS.fmt

 and

f the
ADD

Format: ADD rd, rs, rt MIPS32 (MIPS I)

Purpose:

To add 32-bit integers. If an overflow occurs, then trap.

Description: rd ← rs + rt

The 32-bit word value in GPRrt is added to the 32-bit value in GPRrs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is signed-extended and placed into GPRrd.

Restrictions:

If either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result o
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (GPR[rs] 31||GPR[rs] 31..0) + (GPR[rt] 31||GPR[rt] 31..0)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← sign_extend(temp 31..0)
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADD

100000

6 5 5 5 5 6

Add Word ADD
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 35

36 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 37

ADD.fmt

Format: ADD.S fd, fs, ft MIPS32 (MIPS I)
ADD.D fd, fs, ft MIPS32 (MIPS I)
ADD.PS fd, fs, ft MIPS64 (MIPS V)

Purpose:

To add floating point values

Description: fd ← fs + ft

The value in FPRft is added to the value in FPRfs. The result is calculated to infinite precision, rounded by using to
the current rounding mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt.
ADD.PS adds the upper and lower halves of FPRfsand FPRft independently, and ORs together any generated excep-
tions.

Cause bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of typefmt. If they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of ADD.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) +fmt ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

ADD

000000

6 5 5 5 5 6

Floating Point Add ADD.fmt

38 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ADDI

Format: ADDI rt, rs, immediate MIPS32 (MIPS I)

Purpose:

To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: rt ← rs + immediate

The 16-bit signedimmediateis added to the 32-bit value in GPRrs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is sign-extended and placed into GPRrt.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) then
UNPREDICTABLE

endif
temp ← (GPR[rs] 31||GPR[rs] 31..0) + sign_extend(immediate)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rt] ← sign_extend(temp 31..0)
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 0

ADDI

001000
rs rt immediate

6 5 5 16

Add Immediate Word ADDI

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 39

ADDIU

Format: ADDIU rt, rs, immediate MIPS32 (MIPS I)

Purpose:

To add a constant to a 32-bit integer

Description: rt ← rs + immediate

The 16-bit signedimmediateis added to the 32-bit value in GPRrs and the 32-bit arithmetic result is sign-extended
and placed into GPRrt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) then
UNPREDICTABLE

endif
temp ← GPR[rs] + sign_extend(immediate)
GPR[rt] ← sign_extend(temp 31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

ADDIU

001001
rs rt immediate

6 5 5 16

Add Immediate Unsigned Word ADDIU

40 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ADDU

Format: ADDU rd, rs, rt MIPS32 (MIPS I)

Purpose:

To add 32-bit integers

Description: rd ← rs + rt

The 32-bit word value in GPRrt is added to the 32-bit value in GPRrs and the 32-bit arithmetic result is
sign-extended and placed into GPRrd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

If either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the oper-
ation isUNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← GPR[rs] + GPR[rt]
GPR[rd] ← sign_extend(temp 31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADDU

100001

6 5 5 5 5 6

Add Unsigned Word ADDU

lf of
ALNV.PS

Format: ALNV.PS fd, fs, ft, rs MIPS64 (MIPS V)

Purpose:

To align a misaligned pair of paired single values

Description: fd ← ByteAlign(rs 2..0 , fs, ft)

FPRfs is concatenated with FPRft and this value is funnel-shifted by GPRrs2..0 bytes, and written into FPRfd. If
GPR rs2..0 is 0, fd receivesfs. If GPR rs2..0 is 4, the operation depends on the current endianness.

Figure 3-1 illustrates the following example: for a big-endian operation and a byte alignment of 4, the upper hafd
receives the lower half of the paired single value infs, and the lower half offd receives the upper half of the paired
single value inft.

Figure 3-1 Example of an ALNV.PS Operation

The move is nonarithmetic; it causes no IEEE 754 exceptions.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
rs ft fs fd

ALNV.PS

011110

6 5 5 5 5 6

Floating Point Align Variable ALNV.PS

63 3132 0

63 3132 0

63 3132 0

fs ft

fd
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 41

:

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typePS. If they are not valid, the result isUNPRE-
DICTABLE .

If GPR rs1..0 are non-zero, the results areUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

if GPR[rs] 2..0 = 0 then
StoreFPR(fd, PS,ValueFPR(fs,PS))

else if GPR[rs] 2..0 ≠ 4 then
UNPREDICTABLE

else if BigEndianCPU then
StoreFPR(fd, PS, ValueFPR(fs, PS) 31..0 || ValueFPR(ft,PS) 63..32)

else
StoreFPR(fd, PS, ValueFPR(ft, PS) 31..0 || ValueFPR(fs,PS) 63..32)

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

ALNV.PS is designed to be used with LUXC1 to load 8 bytes of data from any 4-byte boundary. For example
/* Copy T2 bytes (a multiple of 16) of data T0 to T1, T0 unaligned, T1 aligned.

Reads one dw beyond the end of T0. */
LUXC1 F0, 0(T0) /* set up by reading 1st src dw */
LI T3, 0 /* index into src and dst arrays */
ADDIU T4, T0, 8 /* base for odd dw loads */
ADDIU T5, T1, -8/* base for odd dw stores */

LOOP:
LUXC1 F1, T3(T4)
ALNV.PS F2, F0, F1, T0/* switch F0, F1 for little-endian */
SDC1 F2, T3(T1)
ADDIU T3, T3, 16
LUXC1 F0, T3(T0)
ALNV.PS F2, F1, F0, T0/* switch F1, F0 for little-endian */
BNE T3, T2, LOOP
SDC1 F2, T3(T5)

DONE:

Floating Point Align Variable (cont.) ALNV.PS
42 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

dress:
ALNV.PS is also useful with SUXC1 to store paired-single results in a vector loop to a possibly misaligned ad

/* T1[i] = T0[i] + F8, T0 aligned, T1 unaligned. */
CVT.PS.S F8, F8, F8/* make addend paired-single */

/* Loop header computes 1st pair into F0, stores high half if T1 */
/* misaligned */

LOOP:
LDC1 F2, T3(T4)/* get T0[i+2]/T0[i+3] */
ADD.PS F1, F2, F8/* compute T1[i+2]/T1[i+3] */
ALNV.PS F3, F0, F1, T1/* align to dst memory */
SUXC1 F3, T3(T1)/* store to T1[i+0]/T1[i+1] */
ADDIU T3, 16 /* i = i + 4 */
LDC1 F2, T3(T0)/* get T0[i+0]/T0[i+1] */
ADD.PS F0, F2, F8/* compute T1[i+0]/T1[i+1] */
ALNV.PS F3, F1, F0, T1/* align to dst memory */
BNE T3, T2, LOOP
SUXC1 F3, T3(T5)/* store to T1[i+2]/T1[i+3] */

/* Loop trailer stores all or half of F0, depending on T1 alignment */

Floating Point Align Variable (cont.) ALNV.PS
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 43

44 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

AND

Format: AND rd, rs, rt MIPS32 (MIPS I)

Purpose:

To do a bitwise logical AND

Description: rd ← rs AND rt

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical AND operation. The result is
placed into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] and GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

AND

100100

6 5 5 5 5 6

And AND

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 45

ANDI

Format: ANDI rt, rs, immediate MIPS32 (MIPS I)

Purpose:

To do a bitwise logical AND with a constant

Description: rt ← rs AND immediate

The 16-bitimmediateis zero-extended to the left and combined with the contents of GPRrs in a bitwise logical AND
operation. The result is placed into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] and zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ANDI

001100
rs rt immediate

6 5 5 16

And Immediate ANDI

46 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

B

Format: B offset Assembly Idiom

Purpose:

To do an unconditional branch

Description: branch

B offset is the assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BEQ r0, r0, offset.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
I+1: PC ← PC + target_offset

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BEQ

000100

0

00000

0

00000
offset

6 5 5 16

Unconditional Branch B

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 47

BAL

Format: BAL rs, offset Assembly Idiom

Purpose:

To do an unconditional PC-relative procedure call

Description: procedure_call

BAL offset is the assembly idiom used to denote an unconditional branch. The actual instruction is iterpreted by the
hardware as BGEZAL r0, offset.

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction isUNPREDICTABLE . This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
GPR[31] ← PC + 8

I+1: PC ← PC + target_offset

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001

0

00000

BGEZAL

10001
offset

6 5 5 16

Branch and Link BAL

ng
P con-
delay

e

es for
BC1F

Format: BC1F offset (cc = 0 implied) MIPS32 (MIPS I)
BC1F cc, offset MIPS32 (MIPS IV)

Purpose:

To test an FP condition code and do a PC-relative conditional branch

Description: if cc = 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the F
dition code bitCC is false (0), the program branches to the effective target address after the instruction in the
slot is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific valu
tf andnd.

I: condition ← FPConditionCode(cc) = 0
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

0

tf

0
offset

6 5 3 1 1 16

Branch on FP False BC1F
48 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

r

ndition

re

t sets
tion.
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 co
signal (Cp1Cond) and theC bit in the FPControl/Statusregister. MIPS I, II, and III architectures must have theCC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven moreCondition Codebits to the original condition code 0. FP
compare and conditional branch instructions specify theCondition Codebit to set or test. Both assembler formats a
valid for MIPS IV and MIPS32.

In the MIPS I, II, and III architecturesthere must be at least one instruction between the compare instruction tha
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restric

Branch on FP False (cont.) BC1F
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 49

lot only

ng
P
delay

e

es for
BC1FL

Format: BC1FL offset (cc = 0 implied) MIPS32 (MIPS II)
BC1FL cc, offset MIPS32 (MIPS IV)

Purpose:

To test an FP condition code and make a PC-relative conditional branch; execute the instruction in the delay s
if the branch is taken.

Description: if cc = 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FCon-
dition Codebit CC is false (0), the program branches to the effective target address after the instruction in the
slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific valu
tf andnd.

I: condition ← FPConditionCode(cc) = 0
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

1

tf

0
offset

6 5 3 1 1 16

Branch on FP False Likely BC1FL
50 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

r

rom a

is not
ranch
re is

ndition

re

that
riction.
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BC1F instruction instead.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 co
signal (Cp1Cond) and theC bit in the FPControl/Statusregister. MIPS I, II, and III architectures must have theCC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven moreCondition Codebits to the original condition code 0. FP
compare and conditional branch instructions specify theCondition Codebit to set or test. Both assembler formats a
valid for MIPS IV and MIPS32.

In the MIPS II andIII architectionrsthere must be at least one instruction between the compare instruction
sets a condition code and the branch instruction that tests it. Hardware does not detect a violation of this rest

Branch on FP False Likely (cont.) BC1FL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 51

ng
P con-

ay slot

e

es for
BC1T

Format: BC1T offset (cc = 0 implied) MIPS32 (MIPS I)
BC1T cc, offset MIPS32 (MIPS IV)

Purpose:

To test an FP condition code and do a PC-relative conditional branch

Description: if cc = 1 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the F
dition code bitCC is true (1), the program branches to the effective target address after the instruction in the del
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific valu
tf andnd.

I: condition ← FPConditionCode(cc) = 1
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

0

tf

1
offset

6 5 3 1 1 16

Branch on FP True BC1T
52 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

r

ndition

re

sets
tion.
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 co
signal (Cp1Cond) and theC bit in the FPControl/Statusregister. MIPS I, II, and III architectures must have theCC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven moreCondition Codebits to the original condition code 0. FP
compare and conditional branch instructions specify theCondition Codebit to set or test. Both assembler formats a
valid for MIPS IV and MIPS32.

In the MIPS I, II, and III architecturesthere must be at least one instruction between the compare instruction that
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restric

Branch on FP True (cont.) BC1T
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 53

only if

ng
P
delay

e

es for
BC1TL

Format: BC1TL offset (cc = 0 implied) MIPS32 (MIPS II)
BC1TL cc, offset MIPS32 (MIPS IV)

Purpose:

To test an FP condition code and do a PC-relative conditional branch; execute the instruction in the delay slot
the branch is taken.

Description: if cc = 1 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FCon-
dition Codebit CC is true (1), the program branches to the effective target address after the instruction in the
slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific valu
tf andnd.

I: condition ← FPConditionCode(cc) = 1
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

1

tf

1
offset

6 5 3 1 1 16

Branch on FP True Likely BC1TL
54 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

r

rom a

is not
ranch
re is

ndition

re

that
riction.
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BC1T instruction instead.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 co
signal (Cp1Cond) and theC bit in the FPControl/Statusregister. MIPS I, II, and III architectures must have theCC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven moreCondition Codebits to the original condition code 0. FP
compare and conditional branch instructions specify theCondition Codebit to set or test. Both assembler formats a
valid for MIPS IV and MIPS32.

In the MIPS II andIII architectionrsthere must be at least one instruction between the compare instruction
sets a condition code and the branch instruction that tests it. Hardware does not detect a violation of this rest

Branch on FP True Likely (cont.) BC1TL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 55

56 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

BC2F

Format: BC2F offset (cc = 0 implied) MIPS32 (MIPS I)
BC2F cc, offset MIPS32 (MIPS IV)

Purpose:

To test a COP2 condition code and do a PC-relative conditional branch

Description: if cc = 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified byCC is false (0), the program branches to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf andnd.

I: condition ← COP2Condition(cc) = 0
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

0

tf

0
offset

6 5 3 1 1 16

Branch on COP2 False BC2F

lay slot

ng
COP2
in the

e

es for
BC2FL

Format: BC2FL offset (cc = 0 implied) MIPS32 (MIPS II)
BC2FL cc, offset MIPS32 (MIPS IV)

Purpose:

To test a COP2 condition code and make a PC-relative conditional branch; execute the instruction in the de
only if the branch is taken.

Description: if cc = 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the
condition specified byCC is false (0), the program branches to the effective target address after the instruction
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific valu
tf andnd.

I: condition ← COP2Condition(cc) = 0
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

1

tf

0
offset

6 5 3 1 1 16

Branch on COP2 False Likely BC2FL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 57

r

rom a

is not
ranch
re is
Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BC2F instruction instead.

Branch on COP2 False Likely (cont.) BC2FL
58 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 59

BC2T

Format: BC2T offset (cc = 0 implied) MIPS32 (MIPS I)
BC2T cc, offset MIPS32 (MIPS IV)

Purpose:

To test a COP2 condition code and do a PC-relative conditional branch

Description: if cc = 1 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified byCC is true (1), the program branches to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf andnd.

I: condition ← COP2Condition(cc) = 1
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

0

tf

1
offset

6 5 3 1 1 16

Branch on COP2 True BC2T

lot only

ng
COP2

in the

e

es for
BC2TL

Format: BC2TL offset (cc = 0 implied) MIPS32 (MIPS II)
BC2TL cc, offset MIPS32 (MIPS IV)

Purpose:

To test a COP2 condition code and do a PC-relative conditional branch; execute the instruction in the delay s
if the branch is taken.

Description: if cc = 1 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the
condition specified byCC is true (1), the program branches to the effective target address after the instruction
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific valu
tf andnd.

I: condition ← COP2Condition(cc) = 1
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

1

tf

1
offset

6 5 3 1 1 16

Branch on COP2 True Likely BC2TL
60 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

r

rom a

is not
ranch
re is
Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BC2T instruction instead.

Branch on COP2 True Likely (cont.) BC2TL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 61

62 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

BEQ

Format: BEQ rs, rt, offset MIPS32 (MIPS I)

Purpose:

To compare GPRs then do a PC-relative conditional branch

Description: if rs = rt then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are equal, branch to the effective target address after the instruction in the delay
slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

BEQ r0, r0 offset, expressed as B offset, is the assembly idiom used to denote an unconditional branch.

31 26 25 21 20 16 15 0

BEQ

000100
rs rt offset

6 5 5 16

Branch on Equal BEQ

.

ng

lot is

e

BEQL

Format: BEQL rs, rt, offset MIPS32 (MIPS II)

Purpose:

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken

Description: if rs = rt then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are equal, branch to the target address after the instruction in the delay s
executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BEQL

010100
rs rt offset

6 5 5 16

Branch on Equal Likely BEQL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 63

r

rom a

is not
ranch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BEQ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Equal Likely (cont.) BEQL
64 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 65

BGEZ

Format: BGEZ rs, offset MIPS32 (MIPS I)

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs ≥ 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZ

00001
offset

6 5 5 16

Branch on Greater Than or Equal to Zero BGEZ

66 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

BGEZAL

Format: BGEZAL rs, offset MIPS32 (MIPS I)

Purpose:

To test a GPR then do a PC-relative conditional procedure call

Description: if rs ≥ 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction isUNPREDICTABLE . This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZAL r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch and link.
BAL is used in a manner similar to JAL, but provides PC-relative addressing and a more limited target PC range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZAL

10001
offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link BGEZAL

ken.

ranch,

ng

ter the
ted.

hen

e

BGEZALL

Format: BGEZALL rs, offset MIPS32 (MIPS II)

Purpose:

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is ta

Description: if rs ≥ 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address af
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not execu

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction isUNPREDICTABLE . This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
else

NullifyCurrentInstruction()
endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZALL

10011
offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link Likely BGEZALL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 67

rom a

is not
branch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BGEZAL instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Greater Than or Equal to Zero and Link Likely (con’t.) BGEZALL
68 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ng

ter the
ted.

e

BGEZL

Format: BGEZL rs, offset MIPS32 (MIPS II)

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs ≥ 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address af
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not execu

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZL

00011
offset

6 5 5 16

Branch on Greater Than or Equal to Zero Likely BGEZL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 69

r

rom a

is not
ranch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BGEZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Greater Than or Equal to Zero Likely (cont.) BGEZL
70 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 71

BGTZ

Format: BGTZ rs, offset MIPS32 (MIPS I)

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs > 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address
after the instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] > 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BGTZ

000111
rs

0

00000
offset

6 5 5 16

Branch on Greater Than Zero BGTZ

ng

dress
ot exe-

e

BGTZL

Format: BGTZL rs, offset MIPS32 (MIPS II)

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs > 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than zero (sign bit is 0 but value not zero), branch to the effective target ad
after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is n
cuted.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] > 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BGTZL

010111
rs

0

00000
offset

6 5 5 16

Branch on Greater Than Zero Likely BGTZL
72 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

r

rom a

is not
ranch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BGTZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Greater Than Zero Likely (cont.) BGTZL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 73

74 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

BLEZ

Format: BLEZ rs, offset MIPS32 (MIPS I)

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs ≤ 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≤ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BLEZ

000110
rs

0

00000
offset

6 5 5 16

Branch on Less Than or Equal to Zero BLEZ

ng

arget
slot is

e

BLEZL

Format: BLEZL rs, offset MIPS32 (MIPS II)

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs ≤ 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective t
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay
not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≤ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BLEZL

010110
rs

0

00000
offset

6 5 5 16

Branch on Less Than or Equal to Zero Likely BLEZL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 75

r

rom a

is not
ranch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BLEZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Less Than or Equal to Zero Likely (cont.) BLEZL
76 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 77

BLTZ

Format: BLTZ rs, offset MIPS32 (MIPS I)

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs < 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 0 2)

condition ← GPR[rs] < 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZ

00000
offset

6 5 5 16

Branch on Less Than Zero BLTZ

78 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

BLTZAL

Format: BLTZAL rs, offset MIPS32 (MIPS I)

Purpose:

To test a GPR then do a PC-relative conditional procedure call

Description: if rs < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed.

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZAL

10000
offset

6 5 5 16

Branch on Less Than Zero and Link BLTZAL

ken.

ranch,

ng

ion in

hen
eption

e

BLTZALL

Format: BLTZALL rs, offset MIPS32 (MIPS II)

Purpose:

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is ta

Description: if rs < 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruct
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exc
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
else

NullifyCurrentInstruction()
endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZALL

10010
offset

6 5 5 16

Branch on Less Than Zero and Link Likely BLTZALL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 79

rom a

is not
ranch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BLTZAL instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Less Than Zero and Link Likely (cont.) BLTZALL
80 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ng

ion in

e

BLTZL

Format: BLTZL rs, offset MIPS32 (MIPS II)

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs < 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruct
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZL

00010
offset

6 5 5 16

Branch on Less Than Zero Likely BLTZL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 81

r

rom a

is not
ranch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BLTZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Less Than Zero Likely (cont.) BLTZL
82 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 83

BNE

Format: BNE rs, rt, offset MIPS32 (MIPS I)

Purpose:

To compare GPRs then do a PC-relative conditional branch

Description: if rs ≠ rt then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are not equal, branch to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BNE

000101
rs rt offset

6 5 5 16

Branch on Not Equal BNE

.

ng

the

e

BNEL

Format: BNEL rs, rt, offset MIPS32 (MIPS II)

Purpose:

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken

Description: if rs ≠ rt then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are not equal, branch to the effective target address after the instruction in
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BNEL

010101
rs rt offset

6 5 5 16

Branch on Not Equal Likely BNEL
84 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

r

rom a

is not
ranch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BNE instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Not Equal Likely (cont.) BNEL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 85

86 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

BREAK

Format: BREAK MIPS32 (MIPS I)

Purpose:

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
codefield is available for use as software parameters, but is retrieved by the exception handler only by loading the
contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(Breakpoint)

Exceptions:

Breakpoint

31 26 25 6 5 0

SPECIAL

000000
code

BREAK

001101

6 20 6

Breakpoint BREAK

-

e. If

i-
n of the

ndi-

ritten

s true

res

ool-
P val-

true

. Each

he sec-
ot follow

est for
econd
C.cond.fmt

Format: C.cond.S fs, ft (cc = 0 implied) MIPS32 (MIPS I)
C.cond.D fs, ft (cc = 0 implied) MIPS32 (MIPS I)
C.cond.PS fs, ft(cc = 0 implied) MIPS64 (MIPS V)
C.cond.S cc, fs, ft MIPS32 (MIPS IV)
C.cond.D cc, fs, ft MIPS32 (MIPS IV)
C.cond.PS cc, fs, ft MIPS64 (MIPS V)

Purpose:

To compare FP values and record the Boolean result in a condition code

Description: cc ← fs compare_cond ft

The value in FPRfs is compared to the value in FPRft; the values are in formatfmt. The comparison is exact and nei
ther overflows nor underflows.

If the comparison specified bycond2..1 is true for the operand values, the result is true; otherwise, the result is fals
no exception is taken, the result is written into condition codeCC; true is 1 and false is 0.

c.cond.PS compares the upper and lower halves of FPRfsand FPRft independently and writes the results into cond
tion codes CC +1 and CC respectively. The CC number must be even. If the number is not even the operatio
instruction isUNPREDICTABLE .

If one of the values is an SNaN, orcond3 is set and at least one of the values is a QNaN, an Invalid Operation co
tion is raised and the Invalid Operation flag is set in theFCSR. If the Invalid OperationEnablebit is set in theFCSR,
no result is written and an Invalid Operation exception is taken immediately. Otherwise, the Boolean result is w
into condition codeCC.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is alway
and the others are false. The familiar relations aregreater than, less than, andequal. In addition, the IEEE floating
point standard defines the relationunordered,which is true when at least one operand value is NaN; NaN compa
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such asless than or equal,
equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The B
ean result of the instruction is obtained by substituting the Boolean value of each ordering relation for the two F
ues in the equation. If theequal relation is true, for example, then all four example predicates above yield a
result. If theunordered relation is true then only the final predicate,unordered or equal, yields a true result.

Logical negation of a compare result allows eight distinct comparisons to test for the 16 predicates as shown in
mnemonic tests for both a predicate and its logical negation. For each mnemonic,comparetests the truth of the first
predicate. When the first predicate is true, the result is true as shown in the “If Predicate Is True” column, and t
ond predicate must be false, and vice versa. (Note that the False predicate is never true and False/True do n
the normal pattern.)

The truth of the second predicate is the logical negation of the instruction result. After a compare instruction, t
the truth of the first predicate can be made with the Branch on FP True (BC1T) instruction and the truth of the s
can be made with Branch on FP False (BC1F).

31 26 25 21 20 16 15 11 10 8 7 6 5 4 3 0

COP1

010001
fmt ft fs cc 0

A

0

FC

11
cond

6 5 5 5 3 1 1 2 4

Floating Point Compare C.cond.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 87

6
hen an
Table 3-24 shows another set of eight compare operations, distinguished by acond3 value of 1 and testing the same 1
conditions. For these additional comparisons, if at least one of the operands is a NaN, including Quiet NaN, t
Invalid Operation condition is raised. If the Invalid Operation condition is enabled in theFCSR, an Invalid Operation
exception occurs.

Table 3-24 FPU Comparisons Without Special Operand Exceptions

Instruction Comparison Predicate Comparison CC
Result

Instruction

Cond
Mnemonic

Name of Predicate and
Logically Negated Predicate (Abbreviation)

Relation
Values

If
Predicate
 Is True

Inv Op
Excp.

if
QNaN

?

Condition
Field

> < = ? 3 2..0

F
False [this predicate is always False] F F F F

F

No 0

0
True (T) T T T T

UN
Unordered F F F T T

1
Ordered (OR) T T T F F

EQ
Equal F F T F T

2
Not Equal (NEQ) T T F T F

UEQ
Unordered or Equal F F T T T

3
Ordered or Greater Than or Less Than (OGL) T T F F F

OLT
Ordered or Less Than F T F F T

4
Unordered or Greater Than or Equal (UGE) T F T T F

ULT
Unordered or Less Than F T F T T

5
Ordered or Greater Than or Equal (OGE) T F T F F

OLE
Ordered or Less Than or Equal F T T F T

6
Unordered or Greater Than (UGT) T F F T F

ULE
Unordered or Less Than or Equal F T T T T

7
Ordered or Greater Than (OGT) T F F F F

Key: ? =unordered, > =greater than, < = less than, = isequal, T = True, F = False

Floating Point Compare (cont.) C.cond.fmt
88 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Table 3-25 FPU Comparisons With Special Operand Exceptions for QNaNs

Instruction Comparison Predicate Comparison CC
Result

Instructio
n

Cond
Mnemonic

Name of Predicate and
Logically Negated Predicate (Abbreviation)

Relation
Values

If
Predicate
Is True

Inv Op
Excp If
QNaN?

Condition
Field

> < = ? 3 2..0

SF
Signaling False [this predicate always False] F F F F

F

Yes 1

0
Signaling True (ST) T T T T

NGLE
Not Greater Than or Less Than or Equal F F F T T

1
Greater Than or Less Than or Equal (GLE) T T T F F

SEQ
Signaling Equal F F T F T

2
Signaling Not Equal (SNE) T T F T F

NGL
Not Greater Than or Less Than F F T T T

3
Greater Than or Less Than (GL) T T F F F

LT
Less Than F T F F T

4
Not Less Than (NLT) T F T T F

NGE
Not Greater Than or Equal F T F T T

5
Greater Than or Equal (GE) T F T F F

LE
Less Than or Equal F T T F T

6
Not Less Than or Equal (NLE) T F F T F

NGT
Not Greater Than F T T T T

7
Greater Than (GT) T F F F F

Key: ? =unordered, > =greater than, < = less than, = isequal, T = True, F =False

Floating Point Compare (cont.) C.cond.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 89

di-

alf as an
er. The
on are
Restrictions:

The fieldsfsandft must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPREDICT-
ABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of C.cond.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode, or if the con
tion code number is odd.

Operation:
if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or

QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft, fmt)) then
less ← false
equal ← false
unordered ← true
if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or
(cond 3 and (QNaN(ValueFPR(fs,fmt)) or QNaN(ValueFPR(ft,fmt)))) then

SignalException(InvalidOperation)
endif

else
less ← ValueFPR(fs, fmt) < fmt ValueFPR(ft, fmt)
equal ← ValueFPR(fs, fmt) = fmt ValueFPR(ft, fmt)
unordered ← false

endif
condition ← (cond 2 and less) or (cond 1 and equal)

or (cond 0 and unordered)
SetFPConditionCode(cc, condition)

For c.cond.PS, the pseudo code above is repeated for both halves of the operand registers, treating each h
independent single-precision values. Exceptions on the two halves are logically ORed and reported togeth
results of the lower half comparison are written to condition code CC; the results of the upper half comparis
written to condition code CC+1.

Floating Point Compare (cont.) C.cond.fmt
90 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Invalid
NaNs
it code
ling
if two

ndition

re

t sets
tion.
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

Programming Notes:

FP computational instructions, including compare, that receive an operand value of Signaling NaN raise the
Operation condition. Comparisons that raise the Invalid Operation condition for Quiet NaNs in addition to S
permit a simpler programming model if NaNs are errors. Using these compares, programs do not need explic
to check for QNaNs causing theunorderedrelation. Instead, they take an exception and allow the exception hand
system to deal with the error when it occurs. For example, consider a comparison in which we want to know
numbers are equal, but for whichunordered would be an error.

comparisons using explicit tests for QNaN
c.eq.d $f2,$f4# check for equal
nop
bc1t L2 # it is equal
c.un.d $f2,$f4# it is not equal,

but might be unordered
bc1t ERROR # unordered goes off to an error handler

not-equal-case code here
...

equal-case code here
L2:
--
comparison using comparisons that signal QNaN

c.seq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
nop

it is not unordered here
...

not-equal-case code here
...

equal-case code here

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 co
signal (Cp1Cond) and theC bit in the FPControl/Statusregister. MIPS I, II, and III architectures must have theCC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven moreCondition Codebits to the original condition code 0. FP
compare and conditional branch instructions specify theCondition Codebit to set or test. Both assembler formats a
malid for MIPS IV and MIPS32.

In the MIPS I, II, and III architecturesthere must be at least one instruction between the compare instruction tha
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restric

Floating Point Compare (cont.) C.cond.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 91

ss. The
ache as
CACHE

Format: CACHE op, offset(base) MIPS32

Purpose:

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective addre
effective address is used in one of the following ways based on the operation to be performed and the type of c
described in the following table.

31 26 25 21 20 16 15 0

CACHE

101111
base op offset

6 5 5 16

Table 3-26 Usage of Effective Address

Operation
Requires an

Type of
Cache

Usage of Effective Address

Address Virtual
The effective address is used to address the cache. It is implementation dependent
whether an address translation is performed on the effective address (with the
possibility that a TLB Refill or TLB Invalid exception might occur)

Address Physical The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A

The effective address is translated by the MMU to a physical address. It is
implementation dependent whether the effective address or the translated physical
address is used to index the cache.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit ← Log2(BPT)
IndexBit ← Log2(CS / A)
WayBit ← IndexBit + Ceiling(Log2(A))
Way ← Addr WayBit-1..IndexBit
Index ← Addr IndexBit-1..OffsetBit

For a direct-mapped cache, the Way calculation is ignored and the Index value
fully specifies the cache tag. This is shown symbolically in the figure below.

Perform Cache Operation CACHE
92 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

dex
ould use
r TLB

ple, if
ed via a
ion is

rtion of
hether

ches the

cache
ded.
Figure 3-2 Usage of Address Fields to Select Index and Way

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For in
operations (where the address is used to index the cache but need not match the cache tag) software sh
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions no
Refill exceptions with a cause code of TLBS, nor data Watch exceptions.

A Cache Error exception may occur as a byproduct of some operations performed by this instruction. For exam
a Writeback operation detects a cache or bus error during the processing of the operation, that error is report
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruct
terminated in an error.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a po
the kernel address space which would normally result in such an exception. It is implementation dependent w
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address mat
Watch register address match conditions.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Bits [20:18] of the instruction specify the operation to perform. To provide software with a consistent base of
operations, certain encodings must be supported on all processors. The remaining encodings are recommen

Table 3-27 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache

2#00 I Primary Instruction

2#01 D Primary Data or Unified Primary

2#10 T Tertiary

2#11 S Secondary

Perform Cache Operation CACHE

Way

0

Index

OffsetBitIndexBitWayBit

Unused byte index
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 93

Table 3-28 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name Effective
Address
Operand

Type

Operation Compliance

2#000

I Index Invalidate Index

Set the state of the cache block at the specified
index to invalid.

This required encoding may be used by
software to invalidate the entire instruction
cache by stepping through all valid indices.

Required

D
Index Writeback
Invalidate / Index

Invalidate
Index

For a write-back cache: If the state of the cache
block at the specified index is valid and dirty,
write the block back to the memory address
specified by the cache tag. After that operation
is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

For a write-through cache: Set the state of the
cache block at the specified index to invalid.

This required encoding may be used by
software to invalidate the entire data cache by
stepping through all valid indices. Note that
Index Store Tag should be used to initialize the
cache at powerup.

Required

S, T
Index Writeback
Invalidate / Index

Invalidate
Index Optional

2#001 All Index Load Tag Index

Read the tag for the cache block at the specified
index into theTagLoandTagHiCoprocessor 0
registers. If theDataLo andDataHi registers
are implemented, also read the data
corresponding to the byte index into the
DataLo andDataHi registers.

The granularity and alignment of the data read
into theDataLo andDataHi registers is
implementation-dependent, but is typically the
result of an aligned access to the cache,
ignoring the appropriate low-order bits of the
byte index.

Recommended

Perform Cache Operation CACHE
94 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

2#010 All Index Store Tag Index

Write the tag for the cache block at the
specified index from theTagLo andTagHi
Coprocessor 0 registers.

This required encoding may be used by
software to initialize the entire instruction of
data caches by stepping through all valid
indices. Doing so requires that theTagLo and
TagHi registers associated with the cache be
initialized first.

Required

2#011 All Implementation
Dependent Unspecified

Available for implementation-dependent
operation. Optional

2#100

I, D Hit Invalidate Address If the cache block contains the specified
address, set the state of the cache block to
invalid.

This required encoding may be used by
software to invalidate a range of addresses
from the instruction cache by stepping through
the address range by the line size of the cache.

Required
(Instruction Cache
Encoding Only),
Recommended

otherwise

S, T Hit Invalidate Address Optional

2#101

I Fill Address
Fill the cache from the specified address.

Recommended

D
Hit Writeback
Invalidate / Hit

Invalidate
Address

For a write-back cache: If the cache block
contains the specified address and it is valid
and dirty, write the contents back to memory.
After that operation is completed, set the state
of the cache block to invalid. If the block is
valid but not dirty, set the state of the block to
invalid.

For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.

This required encoding may be used by
software to invalidate a range of addresses
from the data cache by stepping through the
address range by the line size of the cache.

Required

S, T
Hit Writeback
Invalidate / Hit

Invalidate
Address Optional

Table 3-28 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name Effective
Address
Operand

Type

Operation Compliance
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 95

2#110

D Hit Writeback Address If the cache block contains the specified
address and it is valid and dirty, write the
contents back to memory. After the operation is
completed, leave the state of the line valid, but
clear the dirty state. For a write-through cache,
this operation may be treated as a nop.

Recommended

S, T Hit Writeback Address Optional

2#111 I, D Fetch and Lock Address

If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. In
set-associative or fully-associative caches, the
way selected on a fill from memory is
implementation dependent.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate
operation to the locked line, or via an Index
Store Tag operation to the line that clears the
lock bit. Note that clearing the lock state via
Index Store Tag is dependent on the
implementation-dependent cache tag and
cache line organization, and that Index and
Index Writeback Invalidate operations are
dependent on cache line organization. Only Hit
and Hit Writeback Invalidate operations are
generally portable across implementations.

It is implementation dependent whether a
locked line is displaced as the result of an
external invalidate or intervention that hits on
the locked line. Software must not depend on
the locked line remaining in the cache if an
external invalidate or intervention would
invalidate the line if it were not locked.

It is implementation dependent whether a
Fetch and Lock operation affects more than
one line. For example, more than one line
around the referenced address may be fetched
and locked. It is recommended that only the
single line containing the referenced address be
affected.

Recommended

Table 3-28 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name Effective
Address
Operand

Type

Operation Compliance
96 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

che-
Restrictions:

The operation of this instruction isUNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction isUNDEFINED if the operaation requires an address, and that address is unca
able.

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

Perform Cache Operation (cont.) CACHE
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 97

+

t

CEIL.L.fmt

Format: CEIL.L.S fd, fs MIPS64 (MIPS III)
CEIL.L.D fd, fs MIPS64 (MIPS III)

Purpose:

To convert an FP value to 64-bit fixed point, rounding up

Description: fd ← convert_and_round(fs)

The value in FPRfs, in formatfmt, is converted to a value in 64-bit long fixed point format and rounding toward∞
(rounding mode 2). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, a d the Invalid Operation flag is set in theFCSR. If
the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for long fixed point; if they are not valid, the resul
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CEIL.L

001010

6 5 5 5 5 6

Fixed Point Ceiling Convert to Long Fixed Point CEIL.L.fmt
98 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

Fixed Point Ceiling Convert to Long Fixed Point (cont.) CEIL.L.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 99

100 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

CEIL.W.fmt

Format: CEIL.W.S fd, fs MIPS32 (MIPS II)
CEIL.W.D fd, fs MIPS32 (MIPS II)

Purpose:

To convert an FP value to 32-bit fixed point, rounding up

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 32-bit word fixed point format and rounding toward +∞
(rounding mode 2). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR. If
the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for word fixed point; if they are not valid, the result
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CEIL.W

001110

6 5 5 5 5 6

Floating Point Ceiling Convert to Word Fixed Point CEIL.W.fmt

CFC1

Format: CFC1 rt, fs MIPS32 (MIPS I)

Purpose:

To copy a word from an FPU control register to a GPR

Description: rt ← FP_Control[fs]

Copy the 32-bit word from FP (coprocessor 1) control registerfs into GPRrt, sign-extending it to 64 bits.

Restrictions:

There are a few control registers defined for the floating point unit. The result isUNPREDICTABLE if fsspecifies a
register that does not exist.

Operation:

if fs = 0 then
temp ← FIR

elseif fs = 25 then
temp ← 0 24 || FCSR 31..25 || FCSR 23

elseif fs = 26 then
temp ← 0 14 || FCSR 17..12 || 0 5 || FCSR 6..2 || 0 2

elseif fs = 28 then
temp ← 0 20 || FCSR 11.7 || 0 4 || FCSR 24 || FCSR 1..0

elseif fs = 31 then
temp ← FCSR

else
temp ← UNPREDICTABLE

endif
GPR[rt] ← sign_extend(temp)

31 26 25 21 20 16 15 11 10 0

COP1

010001

CF

00010
rt fs

0

000 0000 0000

6 5 5 5 11

Move Control Word From Floating Point CFC1
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 101

ere not
Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For the MIPS I, II and III architectures, the contents of GPRrt areUNPREDICTABLE for the instruction immedi-
ately following CFC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers w
available in MIPS I, II, III, or IV.

Move Control Word From Floating Point (cont.) CFC1
102 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 103

CFC2

Format: CFC2 rt, rd MIPS32

Purpose:

To copy a word from a Coprocessor 2 control register to a GPR

Description: rt ← CCR[2,rd]

Copy the 32-bit word from Coprocessor 2 control registerrd into GPRrt, sign-extending it to 64 bits.

Restrictions:

The result isUNPREDICTABLE if fs specifies a register that does not exist.

Operation:

temp ← CCR[2,rd]
GPR[rt] ← sign_extend(temp)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP2

010010

CF

00010
rt rd

0

000 0000 0000

6 5 5 5 11

Move Control Word From Coprocessor 2 CFC2

104 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

CLO

Format: CLO rd, rs MIPS32

Purpose:

To Count the number of leading ones in a word

Description: rd ← count_leading_ones rs

Bits 31..0 of GPRrs are scanned from most significant to least significant bit. The number of leading ones is counted
and the result is written to GPRrd. If all of bits 31..0 were set in GPRrs, the result written to GPRrd is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt andrd fields of the instruction. The operation of the instruction isUNPREDICTABLE if the rt andrd fields of the
instruction contain different values.

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the results of the operation are
UNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) then
UNPREDICTABLE

endif
temp ← 32
for i in 31 .. 0

if GPR[rs] i = 0 then
temp ← 31 - i
break

endif
endfor
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

CLO

100001

6 5 5 5 5 6

Count Leading Ones in Word CLO

unted

oth the

ion are
CLZ

Format: CLZ rd, rs MIPS32

Purpose

Count the number of leading zeros in a word

Description: rd ← count_leading_zeros rs

Bits 31..0 of GPRrs are scanned from most significant to least significant bit. The number of leading zeros is co
and the result is written to GPRrd. If no bits were set in GPRrs, the result written to GPRrt is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in b
rt andrd fields of the instruction. The operation of the instruction isUNPREDICTABLE if the rt andrd fields of the
instruction contain different values.

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the results of the operat
UNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) then
UNPREDICTABLE

endif
temp ← 32
for i in 31 .. 0

if GPR[rs] i = 1 then
temp ← 31 - i
break

endif
endfor
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

CLZ

100000

6 5 5 5 5 6

Count Leading Zeros in Word CLZ
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 105

106 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 107

COP2

Format: COP2 func MIPS32

Purpose:

To performance an operation to Coprocessor 2

Description: CoprocessorOperation(2, cofun)

An implementation-dependent operation is performance to Coprocessor 2, with thecofunvalue passed as an argu-
ment. The operation may specify and reference internal coprocessor registers, and may change the state of the copro-
cessor conditions, but does not modify state within the processor. Details of coprocessor operation and internal state
are described in the documentation for each Coprocessor 2 implementation.

Restrictions:

Operation:

CoprocessorOperation(2, cofun)

Exceptions:

Coprocessor Unusable
Reserved Instruction

31 26 25 24 0

COP2

010010

CO

1
cofun

6 1 25

Coprocessor Operation to Coprocessor 2 COP2

ses
CTC1

Format: CTC1 rt, fs MIPS32 (MIPS I)

Purpose:

To copy a word from a GPR to an FPU control register

Description: FP_Control[fs] ← rt

Copy the low word from GPRrt into the FP (coprocessor 1) control register indicated byfs.

Writing to the floating pointControl/Statusregister, theFCSR, causes the appropriate exception if anyCausebit and
its correspondingEnablebit are both set. The register is written before the exception occurs. Writing toFEXRto set a
cause bit whose enable bit is already set, or writing toFENRto set an enable bit whose cause bit is already set cau
the appropriate exception. The register is written before the exception occurs.

Restrictions:

There are a few control registers defined for the floating point unit. The result isUNPREDICTABLE if fsspecifies a
register that does not exist.

31 26 25 21 20 16 15 11 10 0

COP1

010001

CT

00110
rt fs

0

000 0000 0000

6 5 5 5 11

Move Control Word to Floating Point CTC1
108 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ere not
Operation:

temp ← GPR[rt] 31..0
if fs = 25 then

if temp 31..8 ≠ 0 24 then
UNPREDICTABLE

else
FCSR ← temp 7..1 || FCSR 24 || temp 0 || FCSR 22..0

endif
elseif fs = 26 then

if temp 22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← FCSR31..18 || temp 17..12 || FCSR 11..7 ||
temp 6..2 || FCSR 1..0

endif
elseif fs = 28 then

if temp 22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← FCSR31..25 || temp 2 || FCSR 23..12 || temp 11..7
|| FCSR 6..2 || temp 1..0

endif
elseif fs = 31 then

if temp 22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← temp

endif
else

UNPREDICTABLE
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Historical Information:

For the MIPS I, II and III architectures, the contents of floating point control registerfs are undefined for the instruc-
tion immediately following CTC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers w
available in MIPS I, II, III, or IV.

Move Control Word to Floating Point (cont.) CTC1
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 109

110 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 111

CTC2

Format: CTC2 rt, rd MIPS32

Purpose:

To copy a word from a GPR to a Coprocessor 2 control register

Description: CCR[2,rd] ← rt

Copy the low word from GPRrt into the Coprocessor 2control register indicated byrd.

Restrictions:

The result isUNPREDICTABLE if rd specifies a register that does not exist.

Operation:

temp ← GPR[rt] 31..0
CCR[2,rd] ← temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP2

010010

CT

00110
rt rd

0

000 0000 0000

6 5 5 5 11

Move Control Word to Coprocessor 2 CTC2

112 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

CVT.D.fmt

Format: CVT.D.S fd, fs MIPS32 (MIPS I)
CVT.D.W fd, fs MIPS32 (MIPS I)
CVT.D.L fd, fs MIPS64 (MIPS III)

Purpose:

To convert an FP or fixed point value to double FP

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in double floating point format and rounded according to
the current rounding mode inFCSR. The result is placed in FPRfd. If fmt is S or W, then the operation is always
exact.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for type fmt andfd for double floating point—if they are not valid,
the result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.D

100001

6 5 5 5 5 6

Floating Point Convert to Double Floating Point CVT.D.fmt

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 113

CVT.L.fmt

Format: CVT.L.S fd, fs MIPS64 (MIPS III)
CVT.L.D fd, fs MIPS64 (MIPS III)

Purpose:

To convert an FP value to a 64-bit fixed point

Description: fd ← convert_and_round(fs)

Convert the value in formatfmt in FPR fs to long fixed point format and round according to the current rounding
mode inFCSR. The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR. If
the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written tofd.

Restrictions:

The fieldsfs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.L

100101

6 5 5 5 5 6

Floating Point Convert to Long Fixed Point CVT.L.fmt

CVT.PS.S

Format: CVT.PS.S fd, fs, ft MIPS64 (MIPS V)

Purpose:

To convert two FP values to a paired single value

Description: fd ← fs 31..0 || ft 31..0

The single-precision values in FPRfs andft are written into FPRfd as a paired-single value. The value in FPRfs is
written into the upper half, and the value in FPRft is written into the lower half.

CVT.PS.S is similar to PLL.PS, except that it expects operands of formatS instead ofPS.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs andft must specify FPRs valid for operands of typeS; if they are not valid, the result isUNPREDICT-
ABLE .

The operand must be a value in formatS; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
10000

ft fs fd
CVT.PS
100110

6 5 5 5 5 6

Floating Point Convert Pair to Paired Single CVT.PS.S

31 310 0

63 3132 0

fs ft

fd
114 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Operation:

StoreFPR(fd, S, ValueFPR(fs,S) || ValueFPR(ft,S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation

Floating Point Convert Pair to Paired Single (cont.) CVT.PS.S
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 115

116 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

CVT.S.fmt

Format: CVT.S.D fd, fs MIPS32 (MIPS I)
CVT.S.W fd, fs MIPS32 (MIPS I)
CVT.S.L fd, fs MIPS64 (MIPS III)

Purpose:

To convert an FP or fixed point value to single FP

Description: fd ← convert_and_round(fs)

The value in FPRfs, in formatfmt, is converted to a value in single floating point format and rounded according to the
current rounding mode inFCSR. The result is placed in FPRfd.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for type fmt andfd for single floating point. If they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.S

100000

6 5 5 5 5 6

Floating Point Convert to Single Floating Point CVT.S.fmt

d

CVT.S.PL

Format: CVT.S.PL fd, fs MIPS64 (MIPS V)

Purpose:

To convert one half of a paired single FP value to single FP

Description: fd ← convert_and_round(fs)

The lower paired single value in FPRfs, in format PS, is converted to a value in single floating point format an
rounded according to the current rounding mode inFCSR. The result is placed in FPRfd. This instruction can be used
to isolate the lower half of a paired single value.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for typePSandfd for single floating point. If they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatPS; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of CVT.S.PL isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, S, ConvertFmt(ValueFPR(fs, PS), PL, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110

0

00000
fs fd

CVT.S.PL

101000

6 5 5 5 5 6

Floating Point Convert Pair Lower to Single Floating Point CVT.S.PL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 117

118 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 119

CVT.S.PU

Format: CVT.S.PU fd, fs MIPS64 (MIPS V)

Purpose:

To convert one half of a paired single FP value to single FP

Description: fd ← convert_and_round(fs)

The upper paired single value in FPRfs, in format PS, is converted to a value in single floating point format and
rounded according to the current rounding mode inFCSR. The result is placed in FPRfd. This instruction can be used
to isolate the upper half of a paired single value.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for typePSandfd for single floating point. If they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatPS; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of CVT.S.PU isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, S, ConvertFmt(ValueFPR(fs, PS), PU, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110

0

00000
fs fd

CVT.S.PU

100000

6 5 5 5 5 6

Floating Point Convert Pair Upper to Single Floating Point CVT.S.PU

120 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

CVT.W.fmt

Format: CVT.W.S fd, fs MIPS32 (MIPS I)
CVT.W.D fd, fs MIPS32 (MIPS I)

Purpose:

To convert an FP value to 32-bit fixed point

Description: fd ← convert_and_round(fs)

The value in FPRfs, in formatfmt, is converted to a value in 32-bit word fixed point format and rounded according to
the current rounding mode inFCSR. The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR. If
the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for type fmt andfd for word fixed point—if they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.W

100100

6 5 5 5 5 6

Floating Point Convert to Word Fixed Point CVT.W.fmt

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 121

DADD

Format: DADD rd, rs, rt MIPS64 (MIPS III)

Purpose:

To add 64-bit integers. If overflow occurs, then trap.

Description: rd ← rs + rt

The 64-bit doubleword value in GPRrt is added to the 64-bit value in GPRrs to produce a 64-bit result. If the addi-
tion results in 64-bit 2’s complement arithmetic overflow, then the destination register is not modified and an Integer
Overflow exception occurs. If it does not overflow, the 64-bit result is placed into GPRrd.

Restrictions:

Operation:

temp ← (GPR[rs] 63||GPR[rs]) + (GPR[rt] 63||GPR[rt])
if (temp 64 ≠ temp 63) then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp 63..0
endif

Exceptions:

Integer Overflow, Reserved Instruction

Programming Notes:

DADDU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

DADD

101100

6 5 5 5 5 6

Doubleword Add DADD

122 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

DADDI

Format: DADDI rt, rs, immediate MIPS64 (MIPS III)

Purpose:

To add a constant to a 64-bit integer. If overflow occurs, then trap.

Description: rt ← rs + immediate

The 16-bit signedimmediateis added to the 64-bit value in GPRrs to produce a 64-bit result. If the addition results in
64-bit 2’s complement arithmetic overflow, then the destination register is not modified and an Integer Overflow
exception occurs. If it does not overflow, the 64-bit result is placed into GPRrt.

Restrictions:

Operation:

temp ← (GPR[rs] 63||GPR[rs]) + sign_extend(immediate)
if (temp 64 ≠ temp 63) then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp 63..0
endif

Exceptions:

Integer Overflow, Reserved Instruction

Programming Notes:

DADDIU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 0

DADDI

011000
rs rt immediate

6 5 5 16

Doubleword Add Immediate DADDI

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 123

DADDIU

Format: DADDIU rt, rs, immediate MIPS64 (MIPS III)

Purpose:

To add a constant to a 64-bit integer

Description: rt ← rs + immediate

The 16-bit signedimmediateis added to the 64-bit value in GPRrs and the 64-bit arithmetic result is placed into
GPRrt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[rt] ← GPR[rs] + sign_extend(immediate)

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

DADDIU

011001
rs rt immediate

6 5 5 16

Doubleword Add Immediate Unsigned DADDIU

124 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

DADDU

Format: DADDU rd, rs, rt MIPS64 (MIPS III)

Purpose:

To add 64-bit integers

Description: rd ← rs + rt

The 64-bit doubleword value in GPRrt is added to the 64-bit value in GPRrs and the 64-bit arithmetic result is
placed into GPRrd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[rd] ← GPR[rs] + GPR[rt]

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

DADDU

101101

6 5 5 5 5 6

Doubleword Add Unsigned DADDU

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 125

DCLO

Format: DCLO rd, rs MIPS64

Purpose:

To count the number of leading ones in a doubleword

Description: rd ← count_leading_ones rs

The 64-bit word in GPRrs is scanned from most-significant to least-significant bit. The number of leading ones is
counted and the result is written to GPRrd. If all 64 bits were set in GPRrs, the result written to GPRrd is 64.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt andrd fields of the instruction. The operation of the instruction isUNPREDICTABLE if the rt andrd fields of the
instruction contain different values.

Operation:

temp <- 64
for i in 63.. 0

if GPR[rs] i = 1 then
temp <- 63 - i
break

endif
endfor
GPR[rd] <- temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

DCLO

100101

6 5 5 5 5 6

Count Leading Ones in Doubleword DCLO

126 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

DCLZ

Format: DCLZ rd, rs MIPS64

Purpose:

To count the number of leading zeros in a doubleword

Description: rd ← count_leading_zeros rs

The 64-bit word in GPRrs is scanned from most significant to least significant bit. The number of leading zeros is
counted and the result is written to GPRrd. If no bits were set in GPRrs, the result written to GPRrd is 64.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt andrd fields of the instruction. The operation of the instruction isUNPREDICTABLE if the rt andrd fields of the
instruction contain different values.

Operation:

temp <- 64
for i in 63.. 0

if GPR[rs] i = 0 then
temp <- 63 - i
break

endif
endfor
GPR[rd] <- temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

DCLZ

100100

6 5 5 5 5 6

Count Leading Zeros in Doubleword DCLZ

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 127

DDIV

Format: DDIV rs, rt MIPS64 (MIPS III)

Purpose:

To divide 64-bit signed integers

Description: (LO, HI) ← rs / rt

The 64-bit doubleword in GPRrs is divided by the 64-bit doubleword in GPRrt, treating both operands as signed val-
ues. The 64-bit quotient is placed into special registerLO and the 64-bit remainder is placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPRrt is zero, the arithmetic result value isUNPREDICTABLE .

Operation:

LO ← GPR[rs] div GPR[rt]
HI ← GPR[rs] mod GPR[rt]

Exceptions:

Reserved Instruction

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE . Reads of the HI or LO special register must be separated from subsequent instruc-
tions that write to them by two or more instructions. This restriction was removed in MIPS IV and MIPS32 and all
subsequent levels of the architecture.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DDIV

011110

6 5 5 10 6

Doubleword Divide DDIV

128 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

DDIVU

Format: DDIVU rs, rt MIPS64 (MIPS III)

Purpose:

To divide 64-bit unsigned integers

Description: (LO, HI) ← rs / rt

The 64-bit doubleword in GPRrs is divided by the 64-bit doubleword in GPRrt, treating both operands as unsigned
values. The 64-bit quotient is placed into special registerLO and the 64-bit remainder is placed into special register
HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPRrt is zero, the arithmetic result value is undefined.

Operation:

q ← (0 || GPR[rs]) div (0 || GPR[rt])
r ← (0 || GPR[rs]) mod (0 || GPR[rt])
LO ← q 63..0
HI ← r 63..0

Exceptions:

Reserved Instruction

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instructions
that write to them by two or more instructions. This restriction was removed in MIPS IV and MIPS32 and all subse-
quent levels of the architecture.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DDIVU

011111

6 5 5 10 6

Doubleword Divide Unsigned DDIVU

ained in

on, a
instruc-

ch and
r-mode
DERET

Format: DERET EJTAG

Purpose:

To Return from a debug exception.

Description:

DERET returns from Debug Mode and resumes non-debug execution at the instruction whose address is cont
theDEPC register. DERET does not execute the next instruction (i.e. it has no delay slot).

Restrictions:

A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTC0 or a DMTC0 instructi
CP0 hazard hazard exists that must be removed via software insertion of the apporpriate number of SSNOP
tions.

The DERET instruction implements a software barrier for all changes in the CP0 state that could affect the fet
decode of the instruction at the PC to which the DERET returns, such as changes to the effective ASID, use
state, and addressing mode.

This instruction is legal only if the processor is executing in Debug Mode.The operation of the processor isUNDE-
FINED if a DERET is executed in the delay slot of a branch or jump instruction.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

DERET

011111

6 1 19 6

Debug Exception Return DERET
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 129

Operation:

DebugDM ← 0
DebugIEXI ← 0
if IsMIPS16Implemented() then

PC ← DEPC63..1 || 0
ISAMode ← 0 || DEPC0

else
PC ← DEPC

endif

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

Debug Exception Return (cont.) DERET
130 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

s.
d

f the
DIV

Format: DIV rs, rt MIPS32 (MIPS I)

Purpose:

To divide a 32-bit signed integers

Description: (LO, HI) ← rs / rt

The 32-bit word value in GPRrs is divided by the 32-bit value in GPRrt, treating both operands as signed value
The 32-bit quotient is sign-extended and placed into special registerLO and the 32-bit remainder is sign-extended an
placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result o
operation isUNPREDICTABLE .

If the divisor in GPRrt is zero, the arithmetic result value isUNPREDICTABLE .

Operation:
if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then

UNPREDICTABLE
endif
q ← GPR[rs] 31..0 div GPR[rt] 31..0
LO ← sign_extend(q 31..0)
r ← GPR[rs] 31..0 mod GPR[rt] 31..0
HI ← sign_extend(r 31..0)

Exceptions:

None

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DIV

011010

6 5 5 10 6

Divide Word DIV
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 131

ed and
divi-

th the
more

te
nal con-
EAK

tions to
re

mance

lt of
bse-
and
Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detect
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel wi
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or
typically within the system software; one possibility is to take a BREAK exception with acodefield value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either termina
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptio
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BR
instruction to inform the operating system if a zero is detected.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instruc
execute before it is complete. An attempt to readLO or HI before the results are written interlocks until the results a
ready. Asynchronous execution does not affect the program result, but offers an opportunity for perfor
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the resu
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from su
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV
MIPS32 and all subsequent levels of the architecture.

Divide Word (cont.) DIV
132 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 133

DIV.fmt

Format: DIV.S fd, fs, ft MIPS32 (MIPS I)
DIV.D fd, fs, ft MIPS32 (MIPS I)

Purpose:

To divide FP values

Description: fd ← fs / ft

The value in FPRfs is divided by the value in FPRft. The result is calculated to infinite precision, rounded according
to the current rounding mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt.

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRED-
ICABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) / ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

DIV

000011

6 5 5 5 5 6

Floating Point Divide DIV.fmt

134 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

DIVU

Format: DIVU rs, rt MIPS32 (MIPS I)

Purpose:

To divide a 32-bit unsigned integers

Description: (LO, HI) ← rs / rt

The 32-bit word value in GPRrs is divided by the 32-bit value in GPRrt, treating both operands as unsigned values.
The 32-bit quotient is sign-extended and placed into special registerLO and the 32-bit remainder is sign-extended and
placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation isUNPREDICTABLE .

If the divisor in GPRrt is zero, the arithmetic result value is undefined.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UndefinedResult()

endif
q ← (0 || GPR[rs] 31..0) div (0 || GPR[rt] 31..0)
r ← (0 || GPR[rs] 31..0) mod (0 || GPR[rt] 31..0)
LO ← sign_extend(q 31..0)
HI ← sign_extend(r 31..0)

Exceptions:

None

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DIVU

011011

6 5 5 10 6

Divide Unsigned Word DIVU

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 135

DMFC0

Format: DMFC0 rt, rd MIPS64
DMFC0 rt, rd, sel MIPS64

Purpose:

To move the contents of a coprocessor 0 register to a general purpose register (GPR).

Description: rt ← CPR[0,rd,sel]

The contents of the coprocessor 0 register are loaded into GPRrt. Note that not all coprocessor 0 registers support the
sel field. In those instances, thesel field must be zero.

Restrictions:

The results areUNPREDICTABLE if coprocessor 0 does not contain a register as specified byrd andsel, or if the
coprocessor 0 register specified byrd andsel is a 32-bit register.

Operation:
datadoubleword ← CPR[0,rd,sel]
GPR[rt] ← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0

010000

DMF

00001
rt rd

0

0000 0000
sel

6 5 5 5 8 3

Doubleword Move from Coprocessor 0 DMFC0

136 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

DMFC1

Format: DMFC1 rt,fs MIPS64 (MIPS III)

Purpose:

To move a doubleword from an FPR to a GPR.

Description: rt ← fs

The contents of FPRfs are loaded into GPRrt.

Restrictions:

Operation:
datadoubleword ← ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)
GPR[rt] ← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

Historical Information:

For MIPS III, the contents of GPRrt are undefined for the instruction immediately following DMFC1.

31 26 25 21 20 16 15 11 10 0

COP1

010001

DMF

00001
rt fs

0

000 0000 0000

6 5 5 5 11

Doubleword Move from Floating Point DMFC1

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 137

DMFC2

Format: DMFC2 rt, rd MIPS64
DMFC2, rt, rd,sel MIPS64

Purpose:

To move a doubleword from a coprocessor 2 register to a GPR.

Description: rt ← CPR[2, rd, sel]

The contents of the coprocessor 2 register specified by therd andselfields are loaded into GPRrt. Note that not all
coprocessor 2 registers may support thesel field. In those instances, thesel field must be zero.

Restrictions:

The results areUNPREDICTABLE if coprocessor 2 does not contain a register as specified byrd andsel, or if the
coprocessor 2 register specified byrd andsel is a 32-bit register.

Operation:

datadoubleword ← CPR[2,rd,sel]
GPR[rt] ← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP2

010010

DMF

00001
rt rd

0

000 0000 0
sel

6 5 5 5 8 3

Doubleword Move from Coprocessor 2 DMFC2

138 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

DMTC0

Format: DMTC0 rt, rd MIPS64
DMTC0 rt, rd, sel MIPS64

Purpose:

To move a doubleword from a GPR to a coprocessor 0 register.

Description: CPR[0,rd,sel] ← rt

The contents of GPRrt are loaded into the coprocessor 0 register specified in therd andselfields. Note that not all
coprocessor 0 registers support thesel field. In those instances, thesel field must be zero.

Restrictions:

The results areUNPREDICTABLE if coprocessor 0 does not contain a register as specified byrd andsel, or if the
coprocessor 0 register specified byrd andsel is a 32-bit register.

Operation:

datadoubleword ← GPR[rt]
CPR[0,rd,sel] ← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0

010000

DMT

00101
rt rd

0

0000 0000
sel

6 5 5 5 8 3

Doubleword Move to Coprocessor 0 DMTC0

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 139

DMTC1

Format: DMTC1 rt, fs MIPS64 (MIPS III)

Purpose:

To copy a doubleword from a GPR to an FPR

Description: fs ← rt

The doubleword contents of FPRfs are placed into FPRfs.

Restrictions:

Operation:

datadoubleword ← GPR[rt]
StoreFPR(fs, UNINTERPRETED_DOUBLEWORD, datadoubleword)

Exceptions:

Coprocessor Unusable

Reserved Instruction

Historical Information:

For MIPS III, the contents of FPRfs are undefined for the instruction immediately following DMTC1.

31 26 25 21 20 16 15 11 10 0

COP1

010001

DMT

00101
rt fs

0

000 0000 0000

6 5 5 5 11

Doubleword Move to Floating Point DMTC1

140 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

DMTC2

Format: DMTC2 rt,rd MIPS64
DMTC2 rt, rd, sel MIPS64

Purpose:

To move a doubleword from a GPR to a coprocessor 2 register.

Description: rd ← rt

The contents of GPRrt are loaded into the coprocessor 2 register specified by therd andselfields. Note that not all
coprocessor 2 registers may support thesel field. In those instances, thesel field must be zero.

Restrictions:

The results areUNPREDICTABLE if coprocessor 2 does not contain a register as specified byrd andsel, or if the
coprocessor 2 register specified byrd andsel is a 32-bit register.

Operation:

datadoubleword ← GPR[rt]
CPR[2,rd,sel] ← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP2

010010

DMT

00101
rt rd

0

0 0000 000
sel

6 5 5 5 8 3

Doubleword Move to Coprocessor 2 DMTC2

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 141

DMULT

Format: DMULT rs, rt MIPS64 (MIPS III)

Purpose:

To multiply 64-bit signed integers

Description: (LO, HI) ← rs × rt

The 64-bit doubleword value in GPRrt is multiplied by the 64-bit value in GPRrs, treating both operands as signed
values, to produce a 128-bit result. The low-order 64-bit doubleword of the result is placed into special registerLO,
and the high-order 64-bit doubleword is placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

Operation:

prod ← GPR[rs] × GPR[rt]
LO ← prod 63..0
HI ← prod 127..64

Exceptions:

Reserved Instruction

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to readLO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Historical Perspective:

In MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE . Reads of the HI or LO special register must be separated from subsequent instruc-
tions that write to them by two or more instructions. This restriction was removed in MIPS IV and all subsequent lev-
els of the architecture.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DMULT

011100

6 5 5 10 6

Doubleword Multiply DMULT

142 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

DMULTU

Format: DMULTU rs, rt MIPS64 (MIPS III)

Purpose:

To multiply 64-bit unsigned integers

Description: (LO, HI) ← rs × rt

The 64-bit doubleword value in GPRrt is multiplied by the 64-bit value in GPRrs, treating both operands as
unsigned values, to produce a 128-bit result. The low-order 64-bit doubleword of the result is placed into special reg-
ister LO, and the high-order 64-bit doubleword is placed into special registerHI. No arithmetic exception occurs
under any circumstances.

Restrictions:

Operation:
prod ← (0||GPR[rs]) × (0||GPR[rt])
LO ← prod 63..0
HI ← prod 127..64

Exceptions:

Reserved Instruction

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to readLO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Historical Perspective:

In MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instructions
that write to them by two or more instructions. This restriction was removed in MIPS IV and all subsequent levels of
the architecture.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DMULTU

011101

6 5 5 10 6

Doubleword Multiply Unsigned DMULTU

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 143

DSLL

Format: DSLL rd, rt, sa MIPS64 (MIPS III)

Purpose:

To execute a left-shift of a doubleword by a fixed amount—0 to 31 bits

Description: rd ← rt << sa

The 64-bit doubleword contents of GPRrt are shifted left, inserting zeros into the emptied bits; the result is placed in
GPRrd. The bit-shift amount in the range 0 to 31 is specified bysa.

Restrictions:

Operation:

s ← 0 || sa
GPR[rd] ← GPR[rt] (63–s)..0 || 0 s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

DSLL

111000

6 5 5 5 5 6

Doubleword Shift Left Logical DSLL

144 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

DSLL32

Format: DSLL32 rd, rt, sa MIPS64 (MIPS III)

Purpose:

To execute a left-shift of a doubleword by a fixed amount—32 to 63 bits

Description: rd ← rt << (sa+32)

The 64-bit doubleword contents of GPRrt are shifted left, inserting zeros into the emptied bits; the result is placed in
GPRrd. The bit-shift amount in the range 0 to 31 is specified bysa.

Restrictions:

Operation:

s ← 1 || sa /* 32+sa */
GPR[rd] ← GPR[rt] (63–s)..0 || 0 s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

DSLL32

111100

6 5 5 5 5 6

Doubleword Shift Left Logical Plus 32 DSLL32

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 145

DSLLV

Format: DSLLV rd, rt, sa MIPS64 (MIPS III)

Purpose:

To execute a left-shift of a doubleword by a variable number of bits

Description: rd ← rt << rs

The 64-bit doubleword contents of GPRrt are shifted left, inserting zeros into the emptied bits; the result is placed in
GPRrd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bits in GPRrs.

Restrictions:

Operation:

s ← GPR[rs] 5..0
GPR[rd] ← GPR[rt] (63–s)..0 || 0 s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

DSLLV

010100

6 5 5 5 5 6

Doubleword Shift Left Logical Variable DSLLV

146 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

DSRA

Format: DSRA rd, rt, sa MIPS64 (MIPS III)

Purpose:

To execute an arithmetic right-shift of a doubleword by a fixed amount—0 to 31 bits

Description: rd ← rt >> sa (arithmetic)

The 64-bit doubleword contents of GPRrt are shifted right, duplicating the sign bit (63) into the emptied bits; the
result is placed in GPRrd. The bit-shift amount in the range 0 to 31 is specified bysa.

Restrictions:

Operation:

s ← 0 || sa
GPR[rd] ← (GPR[rt] 63) s || GPR[rt] 63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

DSRA

111011

6 5 5 5 5 6

Doubleword Shift Right Arithmetic DSRA

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 147

DSRA32

Format: DSRA32 rd, rt, sa MIPS64 (MIPS III)

Purpose:

To execute an arithmetic right-shift of a doubleword by a fixed amount—32 to 63 bits

Description: rd ← rt >> (sa+32) (arithmetic)

The doubleword contents of GPRrt are shifted right, duplicating the sign bit (63) into the emptied bits; the result is
placed in GPRrd. The bit-shift amount in the range 32 to 63 is specified bysa+32.

Restrictions:

Operation:

s ← 1 || sa /* 32+sa */
GPR[rd] ← (GPR[rt] 63) s || GPR[rt] 63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

DSRA32

111111

6 5 5 5 5 6

Doubleword Shift Right Arithmetic Plus 32 DSRA32

148 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

DSRAV

Format: DSRAV rd, rt, sa MIPS64 (MIPS III)

Purpose:

To execute an arithmetic right-shift of a doubleword by a variable number of bits

Description: rd ← rt >> rs (arithmetic)

The doubleword contents of GPRrt are shifted right, duplicating the sign bit (63) into the emptied bits; the result is
placed in GPRrd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bits in GPRrs.

Restrictions:

Operation:

s ← GPR[rs] 5..0
GPR[rd] ← (GPR[rt] 63) s || GPR[rt] 63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

DSRAV

010111

6 5 5 5 5 6

Doubleword Shift Right Arithmetic Variable DSRAV

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 149

DSRL

Format: DSRL rd, rt, sa MIPS64 (MIPS III)

Purpose:

To execute a logical right-shift of a doubleword by a fixed amount0 to 31 bits

Description: rd ← rt >> sa (logical)

The doubleword contents of GPRrt are shifted right, inserting zeros into the emptied bits; the result is placed in
GPRrd. The bit-shift amount in the range 0 to 31 is specified bysa.

Restrictions:

Operation:

s ← 0 || sa
GPR[rd] ← 0 s || GPR[rt] 63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

DSRL

111010

6 5 5 5 5 6

Doubleword Shift Right Logical DSRL

150 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

DSRL32

Format: DSRL32 rd, rt, sa MIPS64 (MIPS III)

Purpose:

To execute a logical right-shift of a doubleword by a fixed amount32 to 63 bits

Description: rd ← rt >> (sa+32) (logical)

The 64-bit doubleword contents of GPRrt are shifted right, inserting zeros into the emptied bits; the result is placed
in GPRrd. The bit-shift amount in the range 32 to 63 is specified bysa+32.

Restrictions:

Operation:

s ← 1 || sa /* 32+sa */
GPR[rd] ← 0 s || GPR[rt] 63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

DSRL32

111110

6 5 5 5 5 6

Doubleword Shift Right Logical Plus 32 DSRL32

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 151

DSRLV

Format: DSRLV rd, rt, rs MIPS64 (MIPS III)

Purpose:

To execute a logical right-shift of a doubleword by a variable number of bits

Description: rd ← rt >> rs (logical)

The 64-bit doubleword contents of GPRrt are shifted right, inserting zeros into the emptied bits; the result is placed
in GPRrd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bits in GPRrs.

Restrictions:

Operation:

s ← GPR[rs] 5..0
GPR[rd] ← 0 s || GPR[rt] 63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

DSRLV

010110

6 5 5 5 5 6

Doubleword Shift Right Logical Variable DSRLV

152 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

DSUB

Format: DSUB rd, rs, rt MIPS64 (MIPS III)

Purpose:

To subtract 64-bit integers; trap on overflow

Description: rd ← rs - rt

The 64-bit doubleword value in GPRrt is subtracted from the 64-bit value in GPRrs to produce a 64-bit result. If the
subtraction results in 64-bit 2’s complement arithmetic overflow, then the destination register is not modified and an
Integer Overflow exception occurs. If it does not overflow, the 64-bit result is placed into GPRrd.

Restrictions:

Operation:

temp ← (GPR[rs] 63||GPR[rs]) – (GPR[rt] 63||GPR[rt])
if (temp 64 ≠ temp 63) then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp 63..0
endif

Exceptions:

Integer Overflow, Reserved Instruction

Programming Notes:

DSUBU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

DSUB

101110

6 5 5 5 5 6

Doubleword Subtract DSUB

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 153

DSUBU

Format: DSUBU rd, rs, rt MIPS64 (MIPS III)

Purpose:

To subtract 64-bit integers

Description: rd ← rs - rt

The 64-bit doubleword value in GPRrt is subtracted from the 64-bit value in GPRrs and the 64-bit arithmetic result
is placed into GPRrd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

Operation: 64-bit processors

GPR[rd] ← GPR[rs] – GPR[rt]

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

DSUBU

101111

6 5 5 5 5 6

Doubleword Subtract Unsigned DSUBU

154 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ERET

Format: ERET MIPS32

Purpose:

To return from interrupt, exception, or error trap.

Description:

ERET returns to the interrupted instruction at the completion of interrupt, exception, or error trap processing. ERET
does not execute the next instruction (i.e., it has no delay slot).

Restrictions:

The operation of the processor isUNDEFINED if an ERET is executed in the delay slot of a branch or jump instruc-
tion.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier for all changes in the CP0 state that could affect the fetch and decode of the
instruction at the PC to which the ERET returns, such as changes to the effective ASID, user-mode state, and address-
ing mode.

Operation:

if Status ERL = 1 then
temp ← ErrorEPC
Status ERL ← 0

else
temp ← EPC
Status EXL ← 0

endif
if IsMIPS16Implemented() then

PC ← temp 63..1 || 0
ISAMode ← temp 0

else
PC ← temp

endif
LLbit ← 0

Exceptions:
Coprocessor Unusable Exception

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

ERET

011000

6 1 19 6

Exception Return ERET

-

FLOOR.L.fmt

Format: FLOOR.L.S fd, fs MIPS64 (MIPS III)
FLOOR.L.D fd, fs MIPS64 (MIPS III)

Purpose:

To convert an FP value to 64-bit fixed point, rounding down

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward∞
(rounding mode 3). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR. If
the Invalid Operation Enable bit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written tofd.

Restrictions:

The fieldsfs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

FLOOR.L

001011

6 5 5 5 5 6

Floating Point Floor Convert to Long Fixed Point FLOOR.L.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 155

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

Floating Point Floor Convert to Long Fixed Point (cont.) FLOOR.L.fmt
156 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 157

FLOOR.W.fmt

Format: FLOOR.W.S fd, fs MIPS32 (MIPS II)
FLOOR.W.D fd, fs MIPS32 (MIPS II)

Purpose:

To convert an FP value to 32-bit fixed point, rounding down

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded toward –∞
(rounding mode 3). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR. If
the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for type fmt andfd for word fixed point—if they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

FLOOR.W

001111

6 5 5 5 5 6

Floating Point Floor Convert to Word Fixed Point FLOOR.W.fmt

158 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

J

Format: J target MIPS32 (MIPS I)

Purpose:

To branch within the current 256 MB-aligned region

Description:

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is theinstr_indexfield shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I:
I+1: PC ← PC GPRLEN..28 || instr_index || 0 2

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

J

000010
instr_index

6 26

Jump J

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 159

JAL

Format: JAL target MIPS32 (MIPS I)

Purpose:

To execute a procedure call within the current 256 MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is theinstr_indexfield shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: GPR[31] ← PC + 8
I+1: PC ← PC GPRLEN..28 || instr_index || 0 2

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

JAL

000011
instr_index

6 26

Jump and Link JAL

ch,

y

ne

rchi-

n reex-
dler to

S16
target

nd bit 1

e

JALR

Format: JALR rs (rd = 31 implied) MIPS32 (MIPS I)
JALR rd, rs MIPS32 (MIPS I)

Purpose:

To execute a procedure call to an instruction address in a register

Description: rd ← return_addr, PC ← rs

Place the return address link in GPRrd. The return link is the address of the second instruction following the bran
where execution continues after a procedure call.

For processors that do not implement the MIPS16 ASE:

• Jump to the effective target address in GPRrs. Execute the instruction that follows the jump, in the branch dela
slot, before executing the jump itself.

For processors that do implement the MIPS16 ASE:

• Jump to the effective target address in GPRrs. Set theISA Mode bit to the value in GPRrs bit 0. Bit 0 of the
target address is always zero so that no Address Exceptions occur when bit 0 of the source register is o

At this time the only defined hint field value is 0, which sets default handling of JALR. Future versions of the a
tecture may define additional hint values.

Restrictions:

Register specifiersrs andrd must not be equal, because such an instruction does not have the same effect whe
ecuted. The result of executing such an instruction is undefined. This restriction permits an exception han
resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

The effective target address in GPRrs must be naturally-aligned. For processors that do not implement the MIP
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 is zero a
is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs

0

00000
rd hint

JALR

001001

6 5 5 5 5 6

Jump and Link Register JALR
160 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

s use
Operation:

I: temp ← GPR[rs]
GPR[rd] ← PC + 8

I+1: if Config1 CA = 0 then
PC ← temp

else
PC ← temp GPRLEN-1..1 || 0
ISAMode ← temp 0

endif

Exceptions:

None

Programming Notes:

This is the only branch-and-link instruction that can select a register for the return link; all other link instruction
GPR 31. The default register for GPRrd, if omitted in the assembly language instruction, is GPR 31.

Jump and Link Register, cont. JALR
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 161

ot,

S16
target

nd bit 1

hitec-

e

JR

Format: JR rs MIPS32 (MIPS I)

Purpose:

To execute a branch to an instruction address in a register

Description: PC ← rs

Jump to the effective target address in GPRrs. Execute the instruction following the jump, in the branch delay sl
before jumping.

For processors that implement the MIPS16 ASE, set theISA Modebit to the value in GPRrs bit 0. Bit 0 of the target
address is always zero so that no Address Exceptions occur when bit 0 of the source register is one

Restrictions:

The effective target address in GPRrs must be naturally-aligned. For processors that do not implement the MIP
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 is zero a
is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

At this time the only defined hint field value is 0, which sets default handling of JR. Future versions of the arc
ture may define additional hint values.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
I+1: if Config1 CA = 0 then

PC ← temp
else

PC ← temp GPRLEN-1..1 || 0
ISAMode ← temp 0

endif

Exceptions:

None

31 26 25 21 20 11 10 6 5 0

SPECIAL

000000
rs

0

00 0000 0000
hint

JR

001000

6 5 10 5 6

Jump Register JR
162 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

,

Programming Notes:

Software should use the value 31 for thers field of the instruction word on return from a JAL, JALR, or BGEZAL
and should use a value other than 31 for remaining uses of JR.

Jump Register, cont. JR
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 163

164 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

LB

Format: LB rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load a byte from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
memdoubleword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr 2..0 xor BigEndianCPU 3

GPR[rt] ← sign_extend(memdoubleword 7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error

31 26 25 21 20 16 15 0

LB

100000
base rt offset

6 5 5 16

Load Byte LB

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 165

LBU

Format: LBU rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load a byte from memory as an unsigned value

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
memdoubleword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr 2..0 xor BigEndianCPU 3

GPR[rt] ← zero_extend(memdoubleword 7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error

31 26 25 21 20 16 15 0

LBU

100100
base rt offset

6 5 5 16

Load Byte Unsigned LBU

166 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

LD

Format: LD rt, offset(base) MIPS64 (MIPS III)

Purpose:

To load a doubleword from memory

Description: rt ← memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ← memdoubleword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

31 26 25 21 20 16 15 0

LD

110111
base rt offset

6 5 5 16

Load Doubleword LD

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 167

LDC1

Format: LDC1 ft, offset(base) MIPS32 (MIPS II)

Purpose:

To load a doubleword from memory to an FPR

Description: ft ← memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPRft. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error

31 26 25 21 20 16 15 0

LDC1

110101
base ft offset

6 5 5 16

Load Doubleword to Floating Point LDC1

168 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

LDC2

Format: LDC2 rt, offset(base) MIPS32

Purpose:

To load a doubleword from memory to a Coprocessor 2 register

Description: rt ← memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in Coprocessor 2 registerrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the
effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 03 then SignalException(AddressError) endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
CPR[2,rt,0] ← memdoubleword

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error

31 26 25 21 20 16 15 0

LDC2

110110
base rt offset

6 5 5 16

Load Doubleword to Coprocessor 2 LDC2

ligned
he
es the
double-
LDL

Format: LDL rt, offset(base) MIPS64 (MIPS III)

Purpose:

To load the most-significant part of a doubleword from an unaligned memory address

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the most-significant of 8 consecutive bytes forming a doubleword(DW) in memory, starting at an arbitrary
byte boundary.

A part of DW, the most-significant 1 to 8 bytes, is in the aligned doubleword containingEffAddr. This part ofDW is
loaded appropriately into the most-significant (left) part of GPRrt, leaving the remainder of GPRrt unchanged.

Figure 3-3 illustrates this operation for big-endian byte ordering. The 8 consecutive bytes in 2..9 form an una
doubleword starting at location 2. A part ofDW, 6 bytes, is located in the aligned doubleword starting with t
most-significant byte at 2. LDL first loads these 6 bytes into the left part of the destination register and leav
remainder of the destination unchanged. The complementary LDR next loads the remainder of the unaligned
word.

31 26 25 21 20 16 15 0

LDL

011010
base rt offset

6 5 5 16

Load Doubleword Left LDL

Figure 3-3 Unaligned Doubleword Load Using LDL and LDR

Doubleword at byte 2 in big-endian memory; each memory byte contains its own address

 most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Memory

a b c d e f g h GPR 24 Initial contents

2 3 4 5 6 7 g h After executing LDL $24,2($0)

2 3 4 5 6 7 8 9 Then after LDR $24,9($0)
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 169

ithin an
or
The bytes loaded from memory to the destination register depend on both the offset of the effective address w
aligned doubleword—the low 3 bits of the address (vAddr2..0)—and the current byte-ordering mode of the process
(big- or little-endian). Figure 3-4 shows the bytes loaded for every combination of offset and byte ordering.

Figure 3-4 Bytes Loaded by LDL Instruction

Restrictions:

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
if BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..3 || 0 3

endif
byte ← vAddr 2..0 xor BigEndianCPU 3

memdoubleword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
GPR[rt] ← memdoublworde 7+8*byte..0 || GPR[rt] 55–8*byte..0

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

Memory contents and byte offsets (vAddr2..0) Initial contents of

Destination Registermost — significance — least

0 1 2 3 4 5 6 7 ←big-endian most — significance — least

I J K L M N O P a b c d e f g h

7 6 5 4 3 2 1 0 ←little-endian offset

Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

I J K L M N O P 0 P b c d e f g h

J K L M N O P h 1 O P c d e f g h

K L M N O P g h 2 N O P d e f g h

L M N O P f g h 3 M N O P e f g h

M N O P e f g h 4 L M N O P f g h

N O P d e f g h 5 K L M N O P g h

O P c d e f g h 6 J K L M N O P h

P b c d e f g h 7 I J K L M N O P

Load Doubleword Left (cont.) LDL
170 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ligned
e

ves the
double-
LDR

Format: LDR rt, offset(base) MIPS64 (MIPS III)

Purpose:

To load the least-significant part of a doubleword from an unaligned memory address

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the least-significant of 8 consecutive bytes forming a doubleword(DW) in memory, starting at an arbitrary
byte boundary.

A part of DW, the least-significant 1 to 8 bytes, is in the aligned doubleword containingEffAddr. This part ofDW is
loaded appropriately into the least-significant (right) part of GPRrt leaving the remainder of GPRrt unchanged.

Figure 3-5 illustrates this operation for big-endian byte ordering. The 8 consecutive bytes in 2..9 form an una
doubleword starting at location 2. Two bytes of theDW are located in the aligned doubleword containing th
least-significant byte at 9. LDR first loads these 2 bytes into the right part of the destination register, and lea
remainder of the destination unchanged. The complementary LDL next loads the remainder of the unaligned
word.

Figure 3-5 Unaligned Doubleword Load Using LDR and LDL

31 26 25 21 20 16 15 0

LDR

011011
base rt offset

6 5 5 16

Load Doubleword Right LDR

Doubleword at byte 2 in big-endian memory; each memory byte contains its own address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a b c d e f g h GPR 24 initial contents

2 3 4 5 6 7 g h GPR 24 after LDL $24,2($0)

2 3 4 5 6 7 8 9 GPR 24 after LDR$24,9($0)
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 171

ithin an
or
The bytes loaded from memory to the destination register depend on both the offset of the effective address w
aligned doubleword—the low 3 bits of the address (vAddr2..0)—and the current byte-ordering mode of the process
(big- or little-endian).

Figure 3-6 shows the bytes loaded for every combination of offset and byte ordering.

Figure 3-6 Bytes Loaded by LDR Instruction

Restrictions:

Memory contents and byte offsets (vAddr2..0) Initial contents of

Destination Registermost — significance — least

0 1 2 3 4 5 6 7 ← big-endian most — significance — least

I J K L M N O P a b c d e f g h

7 6 5 4 3 2 1 0 ← little-endian offset

Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

a b c d e f g I 0 I J K L M N O P

a b c d e f I J 1 a I J K L M N O

a b c d e I J K 2 a b I J K L M N

a b c d I J K L 3 a b c I J K L M

a b c I J K L M 4 a b c d I J K L

a b I J K L M N 5 a b c d e I J K

a I J K L M N O 6 a b c d e f I J

I J K L M N O P 7 a b c d e f g I

Load Doubleword Right (cont.) LDR
172 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
if BigEndianMem = 1 then

pAddr ← pAddr PSIZE-1..3 || 0 3

endif
byte ← vAddr 2..0 xor BigEndianCPU 3

memdoubleword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
GPR[rt] ← GPR[rt] 63..64-8*byte || memdoubleword 63..8*byte

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

Load Doubleword Right (cont.) LDR
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 173

174 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

LDXC1

Format: LDXC1 fd, index(base) MIPS64 (MIPS IV)

Purpose:

To load a doubleword from memory to an FPR (GPR+GPR addressing)

Description: fd ← memory[base+index]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPRfd. The contents of GPRindex and GPRbaseare added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr 2..0 ≠ 03 then SignalException(AddressError) endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
StoreFPR (fd, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index

0

00000
fd

LDXC1

000001

6 5 5 5 5 6

Load Doubleword Indexed to Floating Point LDXC1

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 175

LH

Format: LH rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load a halfword from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE–1..3 || (pAddr 2..0 xor (ReverseEndian 2 || 0))
memdoubleword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr 2..0 xor (BigEndianCPU 2 || 0)
GPR[rt] ← sign_extend(memdoubleword 15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 26 25 21 20 16 15 0

LH

100001
base rt offset

6 5 5 16

Load Halfword LH

176 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

LHU

Format: LHU rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load a halfword from memory as an unsigned value

Description: rt ← memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE–1..3 || (pAddr 2..0 xor (ReverseEndian 2 || 0))
memdoubleword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr 2..0 xor (BigEndianCPU 2 || 0)
GPR[rt] ← zero_extend(memdoubleword 15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error

31 26 25 21 20 16 15 0

LHU

100101
base rt offset

6 5 5 16

Load Halfword Unsigned LHU

s for

bit
register

ocessor.

e atomi-

fail on

MW

ress is
LL

Format: LL rt, offset(base) MIPS32 (MIPS II)

Purpose:

To load a word from memory for an atomic read-modify-write

Description: rt ← memory[base+offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operation
cached memory locations.

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address. The contents of the 32-
word at the memory location specified by the aligned effective address are fetched, sign-extended to the GPR
length if necessary, and written into GPRrt.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per pr

When an LL is executed it starts an active RMW sequence replacing any other sequence that was active.

The RMW sequence is completed by a subsequent SC instruction that either completes the RMW sequenc
cally and succeeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the R
sequence without attempting a write.

Restrictions:

The addressed location must be cached; if it is not, the result is undefined.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective add
non-zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
memdoubleword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr 2..0 xor (BigEndianCPU || 0 2)
GPR[rt] ← sign_extend(memdoubleword 31+8*byte..8*byte)
LLbit ← 1

31 26 25 21 20 16 15 0

LL

110000
base rt offset

6 5 5 16

Load Linked Word LL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 177

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

Load Linked Word (cont.) LL
178 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

for

bit
R

ocessor.

e.

e atomi-

block to

MW

ess is
LLD

Format: LLD rt, offset(base) MIPS64 (MIPS III)

Purpose:

To load a doubleword from memory for an atomic read-modify-write

Description: rt ← memory[base+offset]

The LLD and SCD instructions provide primitives to implement atomic read-modify-write (RMW) operations
cached memory locations.

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address. The contents of the 64-
doubleword at the memory location specified by the aligned effective address are fetched and written into GPrt.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per pr

When an LLD is executed it starts the active RMW sequence and replaces any other sequence that was activ

The RMW sequence is completed by a subsequent SCD instruction that either completes the RMW sequenc
cally and succeeds, or does not complete and fails.

Executing LLD on one processor does not cause an action that, by itself, would cause an SCD for the same
fail on another processor.

An execution of LLD does not have to be followed by execution of SCD; a program is free to abandon the R
sequence without attempting a write.

Restrictions:

The addressed location must be cached; if it is not, the result is undefined.

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the effective addr
non-zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ← memdoubleword
LLbit ← 1

31 26 25 21 20 16 15 0

LLD

110100
base rt offset

6 5 5 16

Load Linked Doubleword LLD
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 179

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction

Load Linked Doubleword (cont.) LLD
180 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 181

LUI

Format: LUI rt, immediate MIPS32 (MIPS I)

Purpose:

To load a constant into the upper half of a word

Description: rt ← immediate || 0 16

The 16-bit immediateis shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is
sign-extended and placed into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← sign_extend(immediate || 0 16)

Exceptions:

None

31 26 25 21 20 16 15 0

LUI

001111

0

00000
rt immediate

6 5 5 16

Load Upper Immediate LUI

182 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

LUXC1

Format: LUXC1 fd, index(base) MIPS64 (MIPS V)

Purpose:

To load a doubleword from memory to an FPR (GPR+GPR addressing), ignoring alignment

Description: fd ← memory[(base+index) PSIZE-1..3]

The contents of the 64-bit doubleword at the memory location specified by the effective address are fetched and
placed into the low word of coprocessor 1 general registerfd. The contents of GPRindexand GPRbaseare added to
form the effective address. The effective address is doubleword-aligned; EffectiveAddress2..0 are ignored.

Restrictions:

The result of this instruction is undefined if the processor is executing in 16 FP registers mode.

Operation:

vAddr ← (GPR[base]+GPR[index]) 63..3 || 0 3

(pAddr, CCA) ← AddressTranslation(vaddr, DATA, LOAD)
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
StoreFPR(ft, UNINTERPRETED, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index

0

00000
fd

LUXC1

000101

6 5 5 5 5 6

Load Doubleword Indexed Unaligned to Floating Point LUXC1

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 183

LW

Format: LW rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load a word from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched,
sign-extended to the GPR register length if necessary, and placed in GPRrt. The 16-bit signedoffsetis added to the
contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
memdoubleword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr 2..0 xor (BigEndianCPU || 0 2)
GPR[rt] ← sign_extend(memdoubleword 31+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 26 25 21 20 16 15 0

LW

100011
base rt offset

6 5 5 16

Load Word LW

184 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

LWC1

Format: LWC1 ft, offset(base) MIPS32 (MIPS I)

Purpose:

To load a word from memory to an FPR

Description: ft ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of coprocessor 1 general registerft. The 16-bit signedoffset is added to the contents of
GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

/* mem is aligned 64 bits from memory. Pick out correct bytes. */
vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
memdoubleword ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
StoreFPR(ft, UNINTERPRETED_WORD,

sign_extend(memdoubleword 31+8*bytesel..8*bytesel))

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 0

LWC1

110001
base rt offset

6 5 5 16

Load Word to Floating Point LWC1

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 185

LWC2

Format: LWC2 rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load a word from memory to a COP2 register

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of COP2 (Coprocessor 2) general registerrt. The 16-bit signedoffsetis added to the contents
of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 12..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
CPR[2,rt,0] ← sign_extend(memdoubleword 31+8*bytesel..8*bytesel)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 0

LWC2

110010
base rt offset

6 5 5 16

Load Word to Coprocessor 2 LWC2

d as a
to bits

4 con-

r word
nder of
LWL

Format: LWL rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load the most-significant part of a word as a signed value from an unaligned memory address

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes ofW is in the aligned word containing theEffAddr. This part ofW is loaded into the
most-significant (left) part of the word in GPRrt. The remaining least-significant part of the word in GPRrt is
unchanged.

For 64-bit GPRrt registers, the destination word is the low-order word of the register. The loaded value is treate
signed value; the word sign bit (bit 31) is always loaded from memory and the new sign bit value is copied in
63..32.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The
secutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination registe
and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remai
the unaligned word

Figure 3-7 Unaligned Word Load Using LWL and LWR

31 26 25 21 20 16 15 0

LWL

100010
base rt offset

6 5 5 16

Load Word Left LWL

Word at byte 2 in big-endian memory; each memory byte contains its own address

 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

a b c d e f g h GPR 24 initial contents

sign bit (31) extend 2 3 g h After executing LWL $24,2($0)

sign bit (31) extend 2 3 4 5 Then after LWR $24,5($0)
186 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ithin an
or
ing.
The bytes loaded from memory to the destination register depend on both the offset of the effective address w
aligned word, that is, the low 2 bits of the address (vAddr1..0), and the current byte-ordering mode of the process
(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte order

Figure 3-8 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian

I J K L offset (vAddr1..0) a b c d e f g h

3 2 1 0 ←little-endian most — significance — least

most least

— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr1..0 Little-endian byte ordering

sign bit (31) extended I J K L 0 sign bit (31) extended L f g h

sign bit (31) extended J K L h 1 sign bit (31) extended K L g h

sign bit (31) extended K L g h 2 sign bit (31) extended J K L h

sign bit (31) extended L f g h 3 sign bit (31) extended I J K L

The word sign (31) is always loaded and the value is copied into bits 63..32.

Load Word Left (con’t) LWL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 187

ing bits

iction.
me

ion. All
Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
if BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..3 || 0 3

endif
byte ← 0 || (vAddr 1..0 xor BigEndianCPU 2)
word ← vAddr 2 xor BigEndianCPU
memdoubleword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memdoubleword 31+32*word-8*byte..32*word || GPR[rt] 23-8*byte..0
GPR[rt] ← (temp 31) 32 || temp

Exceptions:

None

TLB Refill, TLB Invalid, Bus Error, Address Error

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zero
63..32 of the destination register when bit 31 is loaded.

Historical Information

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restr
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the sa
destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruct
such restrictions were removed from the architecture in MIPS II.

Load Word Left (con’t) LWL
188 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ted as
t value
lue is

.

4 con-

gister.
LWR

Format: LWR rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load the least-significant part of a word from an unaligned memory address as a signed value

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containingEffAddr. This part ofW is loaded into
the least-significant (right) part of the word in GPRrt. The remaining most-significant part of the word in GPRrt is
unchanged.

If GPR rt is a 64-bit register, the destination word is the low-order word of the register. The loaded value is trea
a signed value; if the word sign bit (bit 31) is loaded (that is, when all 4 bytes are loaded), then the new sign bi
is copied into bits 63..32. If bit 31 is not loaded, the value of bits 63..32 is implementation dependent; the va
either unchanged or a copy of the current value of bit 31.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination register

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The
secutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is in the aligned word con-
taining the least-significant byte at 5. First, LWR loads these 2 bytes into the right part of the destination re
Next, the complementary LWL loads the remainder of the unaligned word.

31 26 25 21 20 16 15 0

LWR

100110
base rt offset

6 5 5 16

Load Word Right LWR
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 189

ithin an
or
ing.
Figure 3-9 Unaligned Word Load Using LWL and LWR

The bytes loaded from memory to the destination register depend on both the offset of the effective address w
aligned word, that is, the low 2 bits of the address (vAddr1..0), and the current byte-ordering mode of the process
(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte order

Load Word Right (cont.) LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address

 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

a b c d e f g h GPR 24 initial contents

no cng or sign bit
(31) extend e f 4 5 After executing LWR $24,5($0)

sign bit (31) extend 2 3 4 5 Then after LWL $24,2($0)
190 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Figure 3-10 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian

I J K L offset (vAddr1..0) a b c d e f g h

3 2 1 0 ←little-endian most — significance — least

most least

— significance —

Destination 64-bit register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr1..0 Little-endian byte ordering

no cng or sign extend e f g I 0 sign bit (31) extended I J K L

no cng or sign extend e f I J 1 no cng or sign extend e I J K

no cng or sign extend e I J K 2 no cng or sign extend e f I J

sign bit (31) extended I J K L 3 no cng or sign extende f g I

The word sign (31) is always loaded and the value is copied into bits 63..32.

Load Word Right (cont.) LWR
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 191

ing bits

iction.
me

ion. All
Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
if BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..3 || 0 3

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

word ← vAddr 2 xor BigEndianCPU
memdoubleword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← GPR[rt] 31..32-8*byte || memdoubleword 31+32*word..32*word+8*byte
if byte = 4 then

utemp ← (temp 31) 32/* loaded bit 31, must sign extend */
else

/* one of the following two behaviors: */
utemp ← GPR[rt] 63..32 /* leave what was there alone */
utemp ← (GPR[rt] 31) 32 /* sign-extend bit 31 */

endif
GPR[rt] ← utemp || temp

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zero
63..32 of the destination register when bit 31 is loaded.

Historical Information

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restr
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the sa
destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruct
such restrictions were removed from the architecture in MIPS II.

Load Word Right (cont.) LWR
192 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 193

LWU

Format: LWU rt, offset(base) MIPS64 (MIPS III)

Purpose:

To load a word from memory as an unsigned value

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
memdoubleword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr 2..0 xor (BigEndianCPU || 0 2)
GPR[rt] ← 0 32 || memdoubleword 31+8*byte..8*byte

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

31 26 25 21 20 16 15 0

LWU

100111
base rt offset

6 5 5 16

Load Word Unsigned LWU

194 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

LWXC1

Format: LWXC1 fd, index(base) MIPS64 (MIPS IV)

Purpose:

To load a word from memory to an FPR (GPR+GPR addressing)

Description: fd ← memory[base+index]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of coprocessor 1 general registerfd. The contents of GPRindexand GPRbaseare added to
form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
memdoubleword ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
StoreFPR(ft, UNINTERPRETED_DOUBLEWORD,

sign_extend(memdoubleword 31+8*bytesel..8*bytesel))

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index

0

00000
fd

LWXC1

000000

6 5 5 5 5 6

Load Word Indexed to Floating Point LWXC1

d

on are
MADD

Format: MADD rs, rt MIPS32

Purpose:

To multiply two words and add the result to Hi, Lo

Description: (LO,HI) ← (rs x rt) + (LO,HI)

The 32-bit word value in GPRrs is multiplied by the 32-bit word value in GPRrt, treating both operands as signe
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values ofHI31..0andLO31..0.. The
most significant 32 bits of the result are sign-extended and written intoHI and the least signficant 32 bits are
sign-extended and written intoLO. No arithmetic exception occurs under any circumstances.

Restrictions:

If GPRsrs or rt do not contain sign-extended 32-bit values (bits 63..31 equal), then the results of the operati
UNPREDICTABLE .

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (HI 31..0 || LO 31..0) + (GPR[rs] 31..0 * GPR[rt] 31..0)
HI ← sign_extend(temp 63..32)
LO ← sign_extend(temp 31..0)

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

0000

0

00000

MADD

000000

6 5 5 5 5 6

Multiply and Add Word to Hi,Lo MADD
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 195

196 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

unding
MADD.fmt

Format: MADD.S fd, fr, fs, ft MIPS64 (MIPS IV)
MADD.D fd, fr, fs, ft MIPS64 (MIPS IV)
MADD.PS fd, fr, fs, ft MIPS64 (MIPS V)

Purpose:

To perform a combined multiply-then-add of FP values

Description: fd ← (fs × ft) + fr

The value in FPRfs is multiplied by the value in FPRft to produce an intermediate product. The value in FPRfr is
added to the product. The result sum is calculated to infinite precision, rounded according to the current ro
mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt.

MADD.PS multiplies then adds the upper and lower halves of FPRfr, FPRfs, and FPRft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of MADD.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, vfr +fmt (vfs ×fmt vft))

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

MADD

100
fmt

6 5 5 5 5 3 3

Floating Point Multiply Add MADD.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 197

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Multiply Add (cont.) MADD.fmt
198 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 199

MADDU

Format: MADDU rs, rt MIPS32

Purpose:

To multiply two unsigned words and add the result to Hi, Lo.

Description: (LO,HI) ← (rs x rt) + (LO,HI)

The 32-bit word value in GPRrs is multiplied by the 32-bit word value in GPRrt, treating both operands as unsigned
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values ofHI31..0andLO31..0.. The
most significant 32 bits of the result are sign-extended and written intoHI and the least signficant 32 bits are
sign-extended and written intoLO. No arithmetic exception occurs under any circumstances.

Restrictions:

If GPRsrs or rt do not contain sign-extended 32-bit values (bits 63..31 equal), then the results of the operation are
UNPREDICTABLE .

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (HI 31..0 || LO 31..0) + ((0 32 || GPR[rs] 31..0) * (0 32 || GPR[rt] 31..0))
HI ← sign_extend(temp 63..32)
LO ← sign_extend(temp 31..0)

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MADDU

000001

6 5 5 5 5 6

Multiply and Add Unsigned Word to Hi,Lo MADDU

200 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MFC0

Format: MFC0 rt, rd MIPS32

Purpose:

To move the contents of a coprocessor 0 register to a general register.

Description: rt ← CPR[0,rd,sel]

The contents of the coprocessor 0 register specified by the combination of rd and sel are sign-extended and loaded
into general register rt. Note that not all coprocessor 0 registers support the sel field. In those instances, the sel field
must be zero.

Restrictions:

The results areUNDEFINED if coprocessor 0 does not contain a register as specified byrd andsel.

Operation:

data ← CPR[0,rd,sel] 31..0
GPR[rt] ← sign_extend(data)

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0

010000

MF

00000
rt rd

0

00000000
sel

6 5 5 5 8 3

Move from Coprocessor 0 MFC0

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 201

MFC1

Format: MFC1 rt, fs MIPS32 (MIPS I)

Purpose:

To copy a word from an FPU (CP1) general register to a GPR

Description: rt ← fs

The contents of FPR fs are sign-extended and loaded into general register rt.

Restrictions:

Operation:
data ← ValueFPR(fs, UNINTERPRETED_WORD) 31..0
GPR[rt] ← sign_extend(data)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS I, MIPS II, and MIPS III the contents of GPRrt are undefined for the instruction immediately following
MFC1.

31 26 25 21 20 16 15 11 10 0

COP1

010001

MF

00000
rt fs

0

000 0000 0000

6 5 5 5 11

Move Word From Floating Point MFC1

202 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MFC2

Format: MFC2 rt, rd MIPS32
MFC2, rt, rd, sel MIPS32

Purpose:

To copy a word from a COP2 general register to a GPR

Description: rt ← rd

The contents of the lower 32-bits of GPRrt are sign-extended and placed into the coprocessor 2 register specified by
therd andselfields. Note that not all coprocessor 2 registers may support theselfield. In those instances, theselfield
must be zero.

Restrictions:

The results areUNPREDICTABLE is coprocessor 2 does not contain a register as specified byrd andsel.

Operation:

data ← CPR[2,rd,sel] 31..0
GPR[rt] ← sign_extend(data)

Exceptions:

Coprocessor Unusable

31 26 25 21 20 16 15 11 10 3 2 0

COP2

010010

MF

00000
rt rd

0

000 0000 0
sel

6 5 5 5 8 3

Move Word From Coprocessor 2 MFC2

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 203

MFHI

Format: MFHI rd MIPS32 (MIPS I)

Purpose:

To copy the special purposeHI register to a GPR

Description: rd ← HI

The contents of special registerHI are loaded into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← HI

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI isUNPREDICTABLE . This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

31 26 25 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFHI

010000

6 10 5 5 6

Move From HI Register MFHI

204 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MFLO

Format: MFLO rd MIPS32 (MIPS I)

Purpose:

To copy the special purposeLO register to a GPR

Description: rd ← LO

The contents of special registerLO are loaded into GPRrd.

Restrictions: None

Operation:
GPR[rd] ← LO

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI isUNPREDICTABLE . This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

31 26 25 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFLO

010010

6 10 5 5 6

Move From LO Register MFLO

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 205

MOV.fmt

Format: MOV.S fd, fs MIPS32 (MIPS I)
MOV.D fd, fs MIPS32 (MIPS I)
MOV.PS fd, fs MIPS64 (MIPS V)

Purpose:

To move an FP value between FPRs

Description: fd ← fs

The value in FPRfs is placed into FPRfd. The source and destination are values in formatfmt. In paired-single for-
mat, both the halves of the pair are copied tofd.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of MOV.PS is undefined if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, ValueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

MOV

000110

6 5 5 5 5 6

Floating Point Move MOV.fmt

206 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MOVF

Format: MOVF rd, rs, cc MIPS32 (MIPS IV)

Purpose:

To test an FP condition code then conditionally move a GPR

Description: if cc = 0 then rd ← rs

If the floating point condition code specified byCC is zero, then the contents of GPRrs are placed into GPRrd.

Restrictions:

Operation:

if FPConditionCode(cc) = 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 18 17 16 15 11 10 6 5 0

SPECIAL

000000
rs cc

0

0

tf

0
rd

0

00000

MOVCI

000001

6 5 3 1 1 5 5 6

Move Conditional on Floating Point False MOVF

be
MOVF.fmt

Format: MOVF.S fd, fs, cc MIPS32 (MIPS IV)
MOVF.D fd, fs, cc MIPS32 (MIPS IV)
MOVF.PS fd, fs, cc MIPS64 (MIPS V)

Purpose:

To test an FP condition code then conditionally move an FP value

Description: if cc = 0 then fd ← fs

If the floating point condition code specified byCC is zero, then the value in FPRfs is placed into FPRfd. The source
and destination are values in formatfmt.

If the condition code is not zero, then FPRfs is not copied and FPRfd retains its previous value in formatfmt. If fd did
not contain a value either in formatfmt or previously unused data from a load or move-to operation that could
interpreted in formatfmt, then the value offd becomesUNPREDICTABLE .

MOVF.PS conditionally merges the lower half of FPRfs into the lower half of FPRfd if condition codeCC is zero,
and independently merges the upper half of FPRfs into the upper half of FPRfd if condition codeCC+1 is zero. The
CC field must be even; if it is odd, the result of this operation isUNPREDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE . The operand must be a value in formatfmt; if it is not, the result isUNPREDITABLE and the value of
the operand FPR becomesUNPREDICTABLE .

The result of MOVF.PS is undefined if the processor is executing in 16 FP registers mode.

31 26 25 21 20 18 17 16 15 11 10 6 5 0

COP1

010001
fmt cc

0

0

tf

0
fs fd

MOVCF

010001

6 5 3 1 1 5 5 6

Floating Point Move Conditional on Floating Point False MOVF.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 207

Operation:

if fmt ≠ PS
if FPConditionCode(cc) = 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

else
mask ← 0
if FPConditionCode(cc+0) = 0 then mask ← mask or 0xF0 endif
if FPConditionCode(cc+1) = 0 then mask ← mask or 0x0F endif
StoreFPR(fd, PS, ByteMerge(mask, fd, fs))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Floating Point False (cont.) MOVF.fmt
208 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 209

MOVN

Format: MOVN rd, rs, rt MIPS32 (MIPS IV)

Purpose:

To conditionally move a GPR after testing a GPR value

Description: if rt ≠ 0 then rd ← rs

If the value in GPRrt is not equal to zero, then the contents of GPRrs are placed into GPRrd.

Restrictions:

None

Operation:

if GPR[rt] ≠ 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

None

Programming Notes:

The non-zero value tested here is thecondition trueresult from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

MOVN

001011

6 5 5 5 5 6

Move Conditional on Not Zero MOVN

e

ter-
MOVN.fmt

Format: MOVN.S fd, fs, rt MIPS32 (MIPS IV)
MOVN.D fd, fs, rt MIPS32 (MIPS IV)
MOVN.PS fd, fs, rt MIPS64 (MIPS V)

Purpose:

To test a GPR then conditionally move an FP value

Description: if rt ≠ 0 then fd ← fs

If the value in GPRrt is not equal to zero, then the value in FPRfs is placed in FPRfd. The source and destination ar
values in formatfmt.

If GPR rt contains zero, then FPRfs is not copied and FPRfd contains its previous value in formatfmt. If fd did not
contain a value either in formatfmt or previously unused data from a load or move-to operation that could be in
preted in formatfmt, then the value offd becomesUNPREDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of MOVN.PS is undefined if the processor is executing in 16 FP registers mode.

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt rt fs fd

MOVN

010011

6 5 5 5 5 6

Floating Point Move Conditional on Not Zero MOVN.fmt
210 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Operation:

if GPR[rt] ≠ 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Not Zero MOVN.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 211

212 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MOVT

Format: MOVT rd, rs, cc MIPS32 (MIPS IV)

Purpose:

To test an FP condition code then conditionally move a GPR

Description: if cc = 1 then rd ← rs

If the floating point condition code specified byCC is one, then the contents of GPRrs are placed into GPRrd.

Restrictions:

Operation:

if FPConditionCode(cc) = 1 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 18 17 16 15 11 10 6 5 0

SPECIAL

000000
rs cc

0

0

tf

1
rd

0

00000

MOVCI

000001

6 5 3 1 1 5 5 6

Move Conditional on Floating Point True MOVT

be
MOVT.fmt

Format: MOVT.S fd, fs, cc MIPS32 (MIPS IV)
MOVT.D fd, fs, cc MIPS32 (MIPS IV)
MOVT.PS fd, fs, cc MIPS64 (MIPS V)

Purpose:

To test an FP condition code then conditionally move an FP value

Description: if cc = 1 then fd ← fs

If the floating point condition code specified byCC is one, then the value in FPRfs is placed into FPRfd. The source
and destination are values in formatfmt.

If the condition code is not one, then FPRfs is not copied and FPRfd contains its previous value in formatfmt. If fd
did not contain a value either in formatfmt or previously unused data from a load or move-to operation that could
interpreted in formatfmt, then the value offd becomes undefined.

MOVT.PS conditionally merges the lower half of FPRfs into the lower half of FPRfd if condition codeCC is one,
and independently merges the upper half of FPRfs into the upper half of FPRfd if condition codeCC+1 is one. The
CC field should be even; if it is odd, the result of this operation isUNPREDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE . The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value
of the operand FPR becomesUNPREDICTABLE .

The result of MOVT.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

31 26 25 21 20 18 17 16 15 11 10 6 5 0

COP1

010001
fmt cc

0

0

tf

1
fs fd

MOVCF

010001

6 5 3 1 1 5 5 6

Floating Point Move Conditional on Floating Point True MOVT.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 213

Operation:

if fmt ≠ PS
if FPConditionCode(cc) = 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

else
mask ← 0
if FPConditionCode(cc+0) = 0 then mask ← mask or 0xF0 endif
if FPConditionCode(cc+1) = 0 then mask ← mask or 0x0F endif
StoreFPR(fd, PS, ByteMerge(mask, fd, fs))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Floating Point True MOVT.fmt
214 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 215

MOVZ

Format: MOVZ rd, rs, rt MIPS32 (MIPS IV

Purpose:

To conditionally move a GPR after testing a GPR value

Description: if rt = 0 then rd ← rs

If the value in GPRrt is equal to zero, then the contents of GPRrs are placed into GPRrd.

Restrictions:

None

Operation:

if GPR[rt] = 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

None

Programming Notes:

The zero value tested here is thecondition falseresult from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

MOVZ

001010

6 5 5 5 5 6

Move Conditional on Zero MOVZ

l-

eted
MOVZ.fmt

Format: MOVZ.S fd, fs, rt MIPS32 (MIPS IV)
MOVZ.D fd, fs, rt MIPS32 (MIPS IV)
MOVZ.PS fd, fs, rt MIPS64 (MIPS V)

Purpose:

To test a GPR then conditionally move an FP value

Description: if rt = 0 then fd ← fs

If the value in GPRrt is equal to zero then the value in FPRfs is placed in FPRfd. The source and destination are va
ues in formatfmt.

If GPR rt is not zero, then FPRfs is not copied and FPRfd contains its previous value in formatfmt. If fd did not con-
tain a value either in formatfmt or previously unused data from a load or move-to operation that could be interpr
in formatfmt, then the value offd becomesUNPREDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of MOVZ.PS is undefined if the processor is executing in 16 FP registers mode.

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt rt fs fd

MOVZ

010010

6 5 5 5 5 6

Floating Point Move Conditional on Zero MOVZ.fmt
216 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Operation:

if GPR[rt] = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Zero (cont.) MOVZ.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 217

218 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MSUB

Format: MSUB rs, rt MIPS32

Purpose:

To multiply two words and subtract the result from Hi, Lo

Description: (LO,HI) ← (rs x rt) - (LO,HI)

The 32-bit word value in GPRrs is multiplied by the 32-bit value in GPRrt, treating both operands as signed values,
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values ofHI31..0andLO31..0.. The
most significant 32 bits of the result are sign-extended and written intoHI and the least signficant 32 bits are
sign-extended and written intoLO. No arithmetic exception occurs under any circumstances.

Restrictions:

If GPRsrs or rt do not contain sign-extended 32-bit values (bits 63..31 equal), then the results of the operation are
UNPREDICTABLE .

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (HI 31..0 || LO 31..0) - (GPR[rs] 31..0 * GPR[rt] 31..0)
HI ← sign_extend(temp 63..32)
LO ← sign_extend(temp 31..0)

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MSUB

000100

6 5 5 5 5 6

Multiply and Subtract Word to Hi,Lo MSUB

current
MSUB.fmt

Format: MSUB.S fd, fr, fs, ft MIPS64 (MIPS IV)
MSUB.D fd, fr, fs, ft MIPS64 (MIPS IV)
MSUB.PS fd, fr, fs, ft MIPS64 (MIPS V)

Purpose:

To perform a combined multiply-then-subtract of FP values

Description: fd ← (fs × ft) − fr

The value in FPRfs is multiplied by the value in FPRft to produce an intermediate product. The value in FPRfr is
subtracted from the product. The subtraction result is calculated to infinite precision, rounded according to the
rounding mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt.

MSUB.PS multiplies then subtracts the upper and lower halves of FPRfr, FPRfs, and FPRft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of MSUB.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs ×fmt vft) −fmt vfr))

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

MSUB

101
fmt

6 5 5 5 5 3 3

Floating Point Multiply Subtract MSUB.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 219

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Multiply Subtract (cont.) MSUB.fmt
220 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 221

MSUBU

Format: MSUBU rs, rt MIPS32

Purpose:

To multiply two words and subtract the result from Hi, Lo

Description: (LO,HI) ← (rs x rt) - (LO,HI)

The 32-bit word value in GPRrs is multiplied by the 32-bit word value in GPRrt, treating both operands as unsigned
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values ofHI31..0 and
LO31..0.. The most significant 32 bits of the result are sign-extended and written intoHI and the least signficant 32
bits are sign-extended and written intoLO. No arithmetic exception occurs under any circumstances.

Restrictions:

If GPRsrs or rt do not contain sign-extended 32-bit values (bits 63..31 equal), then the results of the operation are
UNPREDICTABLE .

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (HI 31..0 || LO 31..0) - ((0 32 || GPR[rs] 31..0) * (0 32 || GPR[rt] 31..0))
HI ← sign_extend(temp 63..32)
LO ← sign_extend(temp 31..0)

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MSUBU

000101

6 5 5 5 5 6

Multiply and Subtract Word to Hi,Lo MSUBU

222 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MTC0

Format: MTC0 rt, rd MIPS32

Purpose:

To move the contents of a general register to a coprocessor 0 register.

Description: CPR[r0, rd, sel] ← rt

The contents of general register rt are loaded into the coprocessor 0 register specified by the combination of rd and
sel. Not all coprocessor 0 registers support the the sel field. In those instances, the sel field must be set to zero.

Restrictions:

The results areUNDEFINED if coprocessor 0 does not contain a register as specified byrd andsel.

Operation:

if (Width(CPR[0,rd,sel]) = 64) then
CPR[0,rd,sel] ← data

else
CPR[0,rd,sel] ← data 31..0

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0

010000

MT

00100
rt rd

0

0000 000
sel

6 5 5 5 8 3

Move to Coprocessor 0 MTC0

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 223

MTC1

Format: MTC1 rt, fs MIPS32 (MIPS I)

Purpose:

To copy a word from a GPR to an FPU (CP1) general register

Description: fs ← rt

The low word in GPRrt is placed into the low word of floating point (Coprocessor 1) general registerfs. If
Coprocessor 1 general registers are 64 bits wide, bits 63..32 of registerfs become undefined.

Restrictions:

Operation:

data ← GPR[rt] 31..0
StoreFPR(fs, UNINTERPRETED_WORD, data)

Exceptions:

Coprocessor Unusable

Historical Information:

For MIPS I, MIPS II, and MIPS III the value of FPRfs is UNPREDICTABLE for the instruction immediately follow-
ing MTC1.

31 26 25 21 20 16 15 11 10 0

COP1

010001

MT

00100
rt fs

0

000 0000 0000

6 5 5 5 11

Move Word to Floating Point MTC1

224 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MTC2

Format: MTC2 rt, rd MIPS32
MTC2 rt, rd, sel MIPS32

Purpose:

To copy a word from a GPR to a COP2 general register

Description: rd ← rt

The low word in GPRrt is placed into the low word of coprocessor 2 general register specified by therd andsel
fields. If coprocessor 2 general registers are 64 bits wide, bits 63..32 of registerrd become undefined. Note that not all
coprocessor 2 registers may support thesel field. In those instances, thesel field must be zero.

Restrictions:

The results areUNPREDICTABLE is coprocessor 2 does not contain a register as specified byrd andsel.

Operation:

data ← GPR[rt] 31..0
CPR[2,rd,sel] ← data

Exceptions:

Coprocessor Unusable

31 26 25 21 20 16 15 11 10 0

COP2

010010

MT

00100
rt rd

0

000 0000 0
sel

6 5 5 5 8 3

Move Word to Coprocessor 2 MTC2

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 225

MTHI

Format: MTHI rs MIPS32 (MIPS I)

Purpose:

To copy a GPR to the special purposeHI register

Description: HI ← rs

The contents of GPRrs are loaded into special registerHI.

Restrictions:

A computed result written to theHI/LO pair by DIV, DIVU, DDIV, DDIVU, DMULT, DMULTU, MULT, or MULTU
must be read by MFHI or MFLO before a new result can be written into eitherHI or LO.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents ofLO are UNPREDICTABLE. The following example shows this illegal situation:

MUL r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTHI r6
... # code not containing mflo
MFLO r3 # this mflo would get an UNPREDICTABLE value

Operation:

HI ← GPR[rs]

Exceptions:

None

Historical Information:

In MIPS I-III, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of theHI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS IV and later, including MIPS32 and MIPS64, this restriction does not exist.

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

MTHI

010001

6 5 15 6

Move to HI Register MTHI

226 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MTLO

Format: MTLO rs MIPS32 (MIPS I)

Purpose:

To copy a GPR to the special purposeLO register

Description: LO ← rs

The contents of GPRrs are loaded into special registerLO.

Restrictions:

A computed result written to theHI/LO pair by DIV, DIVU, DDIV, DDIVU, DMULT, DMULTU, MULT, or MULTU
must be read by MFHI or MFLO before a new result can be written into eitherHI or LO.

If an MTLO instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents ofHI are UNPREDICTABLE. The following example shows this illegal situation:

MUL r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTLO r6
... # code not containing mfhi
MFHI r3 # this mfhi would get an UNPREDICTABLE value

Operation:

LO ← GPR[rs]

Exceptions:

None

Historical Information:

In MIPS I-III, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of theHI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS IV and later, including MIPS32 and MIPS64, this restriction does not exist.

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

MTLO

010011

6 5 15 6

Move to LO Register MTLO

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 227

MUL

Format: MUL rd, rs, rt MIPS32

Purpose:

To multiply two words and write the result to a GPR.

Description: rd ← rs × rt

The 32-bit word value in GPRrs is multiplied by the 32-bit value in GPRrt, treating both operands as signed values,
to produce a 64-bit result. The least significant 32 bits of the product are sign-extended and written to GPRrd. The
contents ofHI andLO areUNPREDICTABLE after the operation. No arithmetic exception occurs under any cir-
cumstances.

Restrictions:

On 64-bit processors, if either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Note that this instruction does not provide the capability of writing the result to the HI and LO registers.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UndefinedResult()

endif
temp <- GPR[rs] * GPR[rt]
GPR[rd] <- sign_extend(temp 31..0)
HI <- UNPREDICTABLE
LO <- UNPREDICTABLE

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to readLO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

MUL

000010

6 5 5 5 5 6

Multiply Word to GPR MUL

228 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MUL.fmt

Format: MUL.S fd, fs, ft MIPS32 (MIPS I)
MUL.D fd, fs, ft MIPS32 (MIPS I)
MUL.PS fd, fs, ft MIPS64 (MIPS V)

Purpose:

To multiply FP values

Description: fd ← fs × ft

The value in FPRfs is multiplied by the value in FPRft. The result is calculated to infinite precision, rounded accord-
ing to the current rounding mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt.
MUL.PS multiplies the upper and lower halves of FPRfs and FPRft independently, and ORs together any generated
exceptional conditions.

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of MUL.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) ×fmt ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

MUL

000010

6 5 5 5 5 6

Floating Point Multiply MUL.fmt

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 229

MULT

Format: MULT rs, rt MIPS32 (MIPS I)

Purpose:

To multiply 32-bit signed integers

Description: (LO, HI) ← rs × rt

The 32-bit word value in GPRrt is multiplied by the 32-bit value in GPRrs, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is sign-extended and placed into special register
LO, and the high-order 32-bit word is sign-extended and placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UndefinedResult()

endif
prod ← GPR[rs] 31..0 × GPR[rt] 31..0
LO ← sign_extend(prod 31..0)
HI ← sign_extend(prod 63..32)

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to readLO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

MULT

011000

6 5 5 10 6

Multiply Word MULT

230 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MULTU

Format: MULTU rs, rt MIPS32 (MIPS I)

Purpose:

To multiply 32-bit unsigned integers

Description: (LO, HI) ← rs × rt

The 32-bit word value in GPRrt is multiplied by the 32-bit value in GPRrs, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is sign-extended and placed into special regis-
terLO, and the high-order 32-bit word is sign-extended and placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UndefinedResult()

endif
prod ← (0 || GPR[rs] 31..0) × (0 || GPR[rt] 31..0)
LO ← sign_extend(prod 31..0)
HI ← sign_extend(prod 63..32)

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to readLO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

MULTU

011001

6 5 5 10 6

Multiply Unsigned Word MULTU

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 231

NEG.fmt

Format: NEG.S fd, fs MIPS32 (MIPS I)
NEG.D fd, fs MIPS32 (MIPS I)
NEG.PS fd, fs MIPS64 (MIPS V)

Purpose:

To negate an FP value

Description: fd ← −fs

The value in FPRfs is negated and placed into FPRfd. The value is negated by changing the sign bit value. The oper-
and and result are values in formatfmt. NEG.PS negates the upper and lower halves of FPRfs independently, and
ORs together any generated exceptional conditions.

This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE . The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value
of the operand FPR becomesUNPREDICTABLE .

The result of NEG.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

NEG

000111

6 5 5 5 5 6

Floating Point Negate NEG.fmt

NMADD.fmt

Format: NMADD.S fd, fr, fs, ft MIPS64 (MIPS IV)
NMADD.D fd, fr, fs, ft MIPS64 (MIPS IV)
NMADD.PS fd, fr, fs, ft MIPS64 (MIPS V)

Purpose:

To negate a combined multiply-then-add of FP values

Description: fd ← − ((fs × ft) + fr)

The value in FPRfs is multiplied by the value in FPRft to produce an intermediate product. The value in FPRfr is
added to the product.

The result sum is calculated to infinite precision, rounded according to the current rounding mode inFCSR, negated
by changing the sign bit, and placed into FPRfd. The operands and result are values in formatfmt.

NMADD.PS applies the operation to the upper and lower halves of FPRfr, FPRfs, and FPRft independently, and
ORs together any generated exceptional conditions.

Cause bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of NMADD.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, −(vfr +fmt (vfs ×fmt vft)))

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

NMADD

110
fmt

6 5 5 5 5 3 3

Floating Point Negative Multiply Add NMADD.fmt
232 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Negative Multiply Add (cont.) NMADD.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 233

NMSUB.fmt

Format: NMSUB.S fd, fr, fs, ft MIPS64 (MIPS IV)
NMSUB.D fd, fr, fs, ft MIPS64 (MIPS IV)
NMSUB.PS fd, fr, fs, ft MIPS64 (MIPS V)

Purpose:

To negate a combined multiply-then-subtract of FP values

Description: fd ← - ((fs × ft) - fr)

The value in FPRfs is multiplied by the value in FPRft to produce an intermediate product. The value in FPRfr is
subtracted from the product.

The result is calculated to infinite precision, rounded according to the current rounding mode inFCSR, negated by
changing the sign bit, and placed into FPRfd. The operands and result are values in formatfmt.

NMSUB.PS applies the operation to the upper and lower halves of FPRfr, FPRfs, and FPRft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of NMSUB.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, −((vfs ×fmt vft) −fmt vfr))

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

NMSUB

111
fmt

6 5 5 5 5 3 3

Floating Point Negative Multiply Subtract NMSUB.fmt
234 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Negative Multiply Subtract (cont.) NMSUB.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 235

236 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

NOP

Format: NOP Assembly Idiom

Purpose:

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as SLL
r0, r0, 0.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

The zero instruction word, which represents SLL, r0, r0, 0, is the preferred NOP for software to use to fill branch and
jump delay slots and to pad out alignment sequences.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000

0

00000

0

00000

0

00000

SLL

000000

6 5 5 5 5 6

No Operation NOP

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 237

NOR

Format: NOR rd, rs, rt MIPS32 (MIPS I)

Purpose:

To do a bitwise logical NOT OR

Description: rd ← rs NOR rt

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical NOR operation. The result is
placed into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

NOR

100111

6 5 5 5 5 6

Not Or NOR

238 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

OR

Format: OR rd, rs, rt MIPS32 (MIPS I)

Purpose:

To do a bitwise logical OR

Description: rd ← rs or rt

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical OR operation. The result is
placed into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] or GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

OR

100101

6 5 5 5 5 6

Or OR

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 239

ORI

Format: ORI rt, rs, immediate MIPS32 (MIPS I)

Purpose:

To do a bitwise logical OR with a constant

Description: rt ← rs or immediate

The 16-bitimmediateis zero-extended to the left and combined with the contents of GPRrs in a bitwise logical OR
operation. The result is placed into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] or zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ORI

001101
rs rt immediate

6 5 5 16

Or Immediate ORI

240 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

PLL.PS

Format: PLL.PS fd, fs, ft MIPS64 (MIPS V)

Purpose:

To merge a pair of paired single values with realignment

Description: fd ← lower(fs) || lower(ft)

A new paired-single value is formed by catenating the lower single offs (bits 31..0) and the lower single offt (bits
31..0).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typePS. If they are not valid, the result isUNPRE-
DICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS) 31..0 || ValueFPR(ft, PS) 31..0)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110
ft fs fd

PLL

101100

6 5 5 5 5 6

Pair Lower Lower PLL.PS

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 241

PLU.PS

Format: PLU.PS fd, fs, ft MIPS64 (MIPS V)

Purpose:

To merge a pair of paired single values with realignment

Description: fd ← lower(fs) || upper(ft)

A new paired-single value is formed by catenating the lower single offs (bits 31..0) and the upper single offt (bits
63..32).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typePS. If they are not valid, the result isUNPRE-
DICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS) 31..0 || ValueFPR(ft, PS) 63..32)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110
ft fs fd

PLU

101101

6 5 5 5 5 6

Pair Lower Upper PLU.PS

perfor-
cluding
a pro-
e of the

eption, the
tion that

emory
store to

des the
tation

h

PREF

Format: PREF hint,offset(base) MIPS32 (MIPS IV)

Purpose:

To move data between memory and cache.

Description: prefetch_memory(base+offset)

PREF adds the 16-bit signedoffsetto the contents of GPRbaseto form an effective byte address. Thehint field sup-
plies information about the way that the data is expected to be used.

PREF enables the processor to take some action, typically prefetching the data into cache, to improve program
mance. The action taken for a specific PREF instruction is both system and context dependent. Any action, in
doing nothing, is permitted as long as it does not change architecturally visible state or alter the meaning of
gram. Implementations are expected either to do nothing, or to take an action that increases the performanc
program.

PREF does not cause addressing-related exceptions. If the address specified would cause an addressing exc
exception condition is ignored and no data movement occurs.However even if no data is prefetched, some ac
is not architecturally visible, such as writeback of a dirty cache line, can take place.

PREF never generates a memory operation for a location with anuncached memory access type.

If PREF results in a memory operation, the memory access type used for the operation is determined by the m
access type of the effective address, just as it would be if the memory operation had been caused by a load or
the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that inclu
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implemen
specific.

Thehint field supplies information about the way the data is expected to be used. Ahint value cannot cause an action
to modify architecturally visible state. A processor may use ahint value to improve the effectiveness of the prefetc
action.

31 26 25 21 20 16 15 0

PREF

110011
base hint offset

6 5 5 16

Prefetch PREF
242 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Table 3-29 Values of thehint Field for the PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load
Use: Prefetched data is expected to be read (not modified).

Action: Fetch data as if for a load.

1 store
Use: Prefetched data is expected to be stored or modified.

Action: Fetch data as if for a store.

2-3 Reserved Reserved for future use - not available to implementations.

4 load_streamed

Use: Prefetched data is expected to be read (not modified) but not
reused extensively; it “streams” through cache.

Action: Fetch data as if for a load and place it in the cache so that it
does not displace data prefetched as “retained.”

5 store_streamed

Use: Prefetched data is expected to be stored or modified but not
reused extensively; it “streams” through cache.

Action: Fetch data as if for a store and place it in the cache so that
it does not displace data prefetched as “retained.”

6 load_retained

Use: Prefetched data is expected to be read (not modified) and
reused extensively; it should be “retained” in the cache.

Action: Fetch data as if for a load and place it in the cache so that it
is not displaced by data prefetched as “streamed.”

7 store_retained

Use: Prefetched data is expected to be stored or modified and reused
extensively; it should be “retained” in the cache.

Action: Fetch data as if for a store and place it in the cache so that
it is not displaced by data prefetched as “streamed.”

Prefetch (cont.) PREF
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 243

8-24 Reserved Reserved for future use - not available to implementations.

25 writeback_invalidate
(also known as “nudge”)

Use: Data is no longer expected to be used.

Action: For a writeback cache, schedule a wirteback of any dirty
data. At the completion of the writeback, mark the state of any
cache lines written back as invalid.

26-29
Implementation
Dependent

Unassigned by the Architecture - available for
implementation-dependent use.

30 PrepareForStore

Use: Prepare the cache for writing an entire line, without the
overhead involved in filling the line from memory.

Action: If the reference hits in the cache, no action is taken. If the
reference misses in the cache, a line is selected for replacement, any
valid and dirty victim is written back to memory, the entire line is
filled with zero data, and the state of the line is marked as valid and
dirty.

31
Implementation
Dependent

Unassigned by the Architecture - available for
implementation-dependent use.

Table 3-29 Values of thehint Field for the PREF Instruction
244 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

e TLB.
prefetch

ss pointer

are to
e truly
Restrictions:

None

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot prefetch data from a mapped location unless the translation for that location is present in th
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so
may not be effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using an addre
value before the validity of a pointer is determined.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from softw
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to b
retained, software should use the Cache instruction to lock data into the cache.

Prefetch (cont.) PREF
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 245

246 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

PREFX

Format: PREFX hint, index(base) MIPS64 (MIPS IV)

Purpose:

To move data between memory and cache.

Description: prefetch_memory[base+index]

PREFX adds the contents of GPRindexto the contents of GPRbaseto form an effective byte address. Thehint field
supplies information about the way the data is expected to be used.

The only functional difference between the PREF and PREFX instructions is the addressing mode implemented by
the two. Refer to the PREF instruction for all other details, including the encoding of thehint field.

Restrictions:

Operation:

vAddr ← GPR[base] + GPR[index]
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

The PREFX instruction is only available on processors that implement floating point and should never by generated
by compilers in situations in which the corresponding load and store indexed floating point instructions are generated.

Also refer to the corresponding section in the PREF instruction description.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index hint

0

00000

PREFX

001111

6 5 5 5 5 6

Prefetch Indexed PREFX

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 247

PUL.PS

Format: PUL.PS fd, fs, ft MIPS64 (MIPS V)

Purpose:

To merge a pair of paired single values with realignment

Description: fd ← upper(fs) || lower(ft)

A new paired-single value is formed by catenating the upper single offs (bits 63..32) and the lower single offt (bits
31..0).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typePS. If they are not valid, the result isUNPRE-
DICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS) 63..32 || ValueFPR(ft, PS) 31..0)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110
ft fs fd

PUL

101110

6 5 5 5 5 6

Pair Upper Lower PUL.PS

248 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

PUU.PS

Format: PUU.PS fd, fs, ft MIPS64 (MIPS V)

Purpose:

To merge a pair of paired single values with realignment

Description: fd ← upper(fs) || upper(ft)

A new paired-single value is formed by catenating the upper single offs (bits 63..32) and the upper single offt (bits
63..32).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typePS. If they are not valid, the result isUNPRE-
DICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS) 63..32 || ValueFPR(ft, PS) 63..32)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110
ft fs fd

PUU

101111

6 5 5 5 5 6

Pair Upper Upper PUU.PS

n

d by the
ndated
RECIP.fmt

Format: RECIP.S fd, fs MIPS64 (MIPS IV)
RECIP.D fd, fs MIPS64 (MIPS IV)

Purpose:

To approximate the reciprocal of an FP value (quickly)

Description: fd ← 1.0 / fs

The reciprocal of the value in FPRfs is approximated and placed into FPRfd. The operand and result are values i
formatfmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specifie
IEEE 754 Floating Point standard. The computed result differs from the both the exact result and the IEEE-ma
representation of the exact result by no more than one unit in the least-significant place (ULP).

It is implementation dependent whether the result is affected by the current rounding mode inFCSR.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of RECIP.D isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, 1.0 / valueFPR(fs, fmt))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

RECIP

010101

6 5 5 5 5 6

Reciprocal Approximation RECIP.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 249

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

Reciprocal Approximation (cont.) RECIP.fmt
250 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ar-

set in

t

ROUND.L.fmt

Format: ROUND.L.S fd, fs MIPS64 (MIPS III)
ROUND.L.D fd, fs MIPS64 (MIPS III)

Purpose:

To convert an FP value to 64-bit fixed point, rounding to nearest

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded to ne
est/even (rounding mode 0). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is
theFCSR. If the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 263–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for long fixed point; if they are not valid, the resul
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

ROUND.L

001000

6 5 5 5 5 6

Floating Point Round to Long Fixed Point ROUND.L.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 251

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow

Floating Point Round to Long Fixed Point (cont.) ROUND.L.fmt
252 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ven

set in

t

ROUND.W.fmt

Format: ROUND.W.S fd, fs MIPS32 (MIPS II)
ROUND.W.D fd, fs MIPS32 (MIPS II)

Purpose:

To convert an FP value to 32-bit fixed point, rounding to nearest

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 32-bit word fixed point format rounding to nearest/e
(rounding mode 0). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is
theFCSR. If the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for word fixed point; if they are not valid, the resul
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

ROUND.W

001100

6 5 5 5 5 6

Floating Point Round to Word Fixed Point ROUND.W.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 253

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow

Floating Point Round to Word Fixed Point (cont). ROUND.W.fmt
254 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

d by the
ndated
RSQRT.fmt

Format: RSQRT.S fd, fs MIPS64 (MIPS IV)
RSQRT.D fd, fs MIPS64 (MIPS IV)

Purpose:

To approximate the reciprocal of the square root of an FP value (quickly)

Description: fd ← 1.0 / sqrt(fs)

The reciprocal of the positive square root of the value in FPRfs is approximated and placed into FPRfd. The operand
and result are values in formatfmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specifie
IEEE 754 Floating Point standard. The computed result differs from both the exact result and the IEEE-ma
representation of the exact result by no more than two units in the least-significant place (ULP).

The effect of the currentFCSR rounding mode on the result is implementation dependent.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of RSQRT.D isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, 1.0 / SquareRoot(valueFPR(fs, fmt)))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

RSQRT

010110

6 5 5 5 5 6

Reciprocal Square Root Approximation RSQRT.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 255

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Reciprocal Square Root Approximation (cont.) RSQRT.fmt
256 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 257

SB

Format: SB rt, offset(base) MIPS32 (MIPS I)

Purpose:

To store a byte to memory

Description: memory[base+offset] ← rt

The least-significant 8-bit byte of GPRrt is stored in memory at the location specified by the effective address. The
16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

None

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
bytesel ← vAddr 2..0 xor BigEndianCPU 3

datadoubleword ← GPR[rt] 63–8*bytesel..0 || 0 8*bytesel

StoreMemory (CCA, BYTE, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

31 26 25 21 20 16 15 0

SB

101000
base rt offset

6 5 5 16

Store Byte SB

ched

omplete

e

ry
rd and

il; the

ion of
ds.

address
SC

Format: SC rt, offset(base) MIPS32 (MIPS II)

Purpose:

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[base+offset] ← rt, rt ← 1 else rt ← 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for ca
memory locations.

The 16-bit signedoffset is added to the contents of GPRbaseto form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To c
the RMW sequence atomically, the following occur:

• The least-significant 32-bit word of GPRrt is stored into memory at the location specified by the aligned effectiv
address.

• A 1, indicating success, is written into GPRrt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPRrt.

If either of the following events occurs between the execution of LL and SC, the SC fails:

• A coherent store is completed by another processor or coherent I/O module into the block of physical memo
containing the word. The size and alignment of the block is implementation dependent, but it is at least one wo
at most the minimum page size.

• An exception occurs on the processor executing the LL/SC.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fa
success or failure is not predictable. Portable programs should not cause one of these events.

• A load, store, or prefetch is executed on the processor executing the LL/SC.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous reg
virtual memory. The region does not have to be aligned, other than the alignment required for instruction wor

The following conditions must be true or the result of the SC is undefined:

• Execution of SC must have been preceded by execution of an LL instruction.

• A RMW sequence executed without intervening exceptions must use the same address in the LL and SC. The
is the same if the virtual address, physical address, and cache-coherence algorithm are identical.

31 26 25 21 20 16 15 0

SC

111000
base rt offset

6 5 5 16

Store Conditional Word SC
258 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

rates

with

ade
r

with a
mic

ero, an
Atomic RMW is provided only for cached memory locations. The extent to which the detection of atomicity ope
correctly depends on the system implementation and the memory access type used for the location:

• MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
a memory access type ofcached coherent.

• Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be m
with memory access type of eithercached noncoherent or cached coherent. All accesses must be to one or the othe
access type, and they may not be mixed.

I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made
memory access type ofcached coherent. If the I/O system does not use coherent memory operations, then ato
RMW cannot be provided with respect to the I/O reads and writes.

Restrictions:

The addressed location must have a memory access type ofcached noncoherentor cached coherent; if it does not, the
result is undefined.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
datadoubleword ← GPR[rt] 63-8*bytesel..0 || 0 8*bytesel

if LLbit then
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

endif
GPR[rt] ← 0 63 || LLbit

Store Conditional Word (cont.) SC
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 259

mples of
re emu-

n

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some exa
these are arithmetic operations that trap, system calls, and floating point operations that trap or require softwa
lation assistance.

LL and SC function on a single processor forcached noncoherentmemory so that parallel programs can be run o
uniprocessor systems that do not supportcached coherent memory access types.

Store Conditional Word (cont.) SC
260 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

s.

taining
 and at

y fail;

egion
words.)

D. The
SCD

Format: SCD rt, offset(base) MIPS64 (MIPS III)

Purpose:

To store a doubleword to memory to complete an atomic read-modify-write

Description:if atomic_update then memory[base+offset] ← rt, rt ← 1 else rt ← 0

The 16-bit signedoffset is added to the contents of GPRbaseto form an effective address.

The SCD completes the RMW sequence begun by the preceding LLD instruction executed on the processor.

If it would complete the RMW sequence atomically, the following occur:

• The 64-bit doubleword of GPRrt is stored into memory at the location specified by the aligned effective addres

• A 1, indicating success, is written into GPRrt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPRrt.

If either of the following events occurs between the execution of LLD and SCD, the SCD fails:

• Another processor completes a coherent store or a coherent I/O module into the block of physical memory con
the word. The size and alignment of the block is implementation dependent, but it is at least one doubleword
most the minimum page size.

• An exception occurs on the processor executing the LLD/SCD.

An implementation may detect an exception in one of three ways:

• detect exceptions and fail when an exception occurs

• fail after the return-from-interrupt instruction (RFE or ERET) is executed

• both of the above

If either of the following events occurs between the execution of LLD and SCD, the SCD may succeed or it ma
success or failure is not predictable. Portable programs should not cause these events:

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LLD/SCD.

• The instructions executed starting with the LLD and ending with the SCD do not lie in a 2048-byte contiguous r
of virtual memory. (The region does not have to be aligned, other than the alignment required for instruction

The following two conditions must be true or the result of the SCD is undefined:

• Execution of the SCD must be preceded by execution of an LLD instruction.

• An RMW sequence executed without intervening exceptions must use the same address in the LLD and SC
address is the same if the virtual address, physical address, and cache-coherence algorithm are identical.

31 26 25 21 20 16 15 0

SCD

111100
base rt offset

6 5 5 16

Store Conditional Doubleword SCD
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 261

ion and

with

ade
r

ith a
ic

There
truction
tation.

y

ero, an
Atomic RMW is provided only for memory locations withcached noncoherentor cached coherentmemory access
types. The extent to which the detection of atomicity operates correctly depends on the system implementat
the memory access type used for the location:

• MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
a memory access type ofcached coherent.

• Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be m
with memory access type of eithercached noncoherent or cached coherent. All accesses must be to one or the othe
access type, and they may not be mixed.

• I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made w
memory access type ofcached coherent. If the I/O system does not use coherent memory operations, then atom
RMW cannot be provided with respect to the I/O reads and writes.

This section applies to User-mode operation on all MIPS processors that support the MIPS III architecture.
may be other implementation-specific events, such as privileged CP0 instructions, that can cause an SCD ins
to fail in some cases. System programmers using LLD/SCD should consult implementation-specific documen

Restrictions:

The addressed location must have a memory access type ofcached noncoherentor cached coherent; if it does not, the
result is undefined. The 64-bit doubleword of registerrt is conditionally stored in memory at the location specified b
the aligned effective address. The 16-bit signedoffset is added to the contents of GPRbaseto form the effective
address.

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
datadoubleword ← GPR[rt]
if LLbit then

StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 0 63 || LLbit

Store Conditional Doubleword (cont.) SCD
262 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

xamples
require

n

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction

Programming Notes:

LLD and SCD are used to atomically update memory locations, as shown below.

L1:
LLD T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SCD T2, (T0) # try to store,

checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LLD and SCD cause SCD to fail, so persistent exceptions must be avoided. Some e
of such exceptions are arithmetic operations that trap, system calls, and floating point operations that trap or
software emulation assistance.

LLD and SCD function on a single processor for cachednoncoherent memoryso that parallel programs can be run o
uniprocessor systems that do not supportcached coherent memory access types.

Store Conditional Doubleword (cont.) SCD
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 263

264 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

SDi

Format: SD rt, offset(base) MIPS64 (MIPS III)

Purpose:

To store a doubleword to memory

Description: memory[base+offset] ← rt

The 64-bit doubleword in GPRrt is stored in memory at the location specified by the aligned effective address. The
16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the effective address is
non-zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
datadoubleword ← GPR[rt]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction

31 26 25 21 20 16 15 0

SD

111111
base rt offset

6 5 5 16

Store Doubleword SD

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 265

SDBBP

Format: SDBBP code EJTAG

Purpose:

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. The code field can be used
for passing information to the debug exception handler, and is retrieved by the debug exception handler only by load-
ing the contents of the memory word containing the instruction, using the DEPC register. The CODE field is not used
in any way by the hardware.

Restrictions:

Operation:

If Debug DM = 0 then
SignalDebugBreakpointException()

else
SignalDebugModeBreakpointException()

endif

Exceptions:

Debug Breakpoint Exception

31 26 25 6 5 0

SPECIAL2

011100
code

SDBBP

111111

6 20 6

Software Debug Breakpoint SDBBP

266 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

SDC1

Format: SDC1 ft, offset(base) MIPS32 (MIPS II)

Purpose:

To store a doubleword from an FPR to memory

Description: memory[base+offset] ← ft

The 64-bit doubleword in FPRft is stored in memory at the location specified by the aligned effective address. The
16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)
StoreMemory(CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SDC1

111101
base ft offset

6 5 5 16

Store Doubleword from Floating Point SDC1

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 267

SDC2

Format: SDC2 rt, offset(base) MIPS32

Purpose:

To store a doubleword from a Coprocessor 2 register to memory

Description: memory[base+offset] ← rt

The 64-bit doubleword in Coprocessor 2 registerrt is stored in memory at the location specified by the aligned effec-
tive address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:
vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← CPR[2,rt,0]
StoreMemory(CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SDC2

111110
base rt offset

6 5 5 16

Store Doubleword from Coprocessor 2 SDC2

rm an
g
ytes in
SDL

Format: SDL rt, offset(base) MIPS64 (MIPS III)

Purpose:

To store the most-significant part of a doubleword to an unaligned memory address

Description: memory[base+offset] ← Some_Bytes_From rt

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the most-significant of 8 consecutive bytes forming a doubleword(DW) in memory, starting at an arbitrary
byte boundary.

A part ofDW, the most-significant 1 to 8 bytes, is in the aligned doubleword containingEffAddr. The same number of
most-significant (left) bytes of GPRrt are stored into these bytes ofDW.

The figure below illustrates this operation for big-endian byte ordering. The 8 consecutive bytes in 2..9 fo
unaligned doubleword starting at location 2. A part ofDW, 6 bytes, is located in the aligned doubleword containin
the most-significant byte at 2. First, SDL stores the 6 most-significant bytes of the source register into these b
memory. Next, the complementary SDR instruction stores the remainder ofDW.

Figure 3-11 Unaligned Doubleword Store With SDL and SDR

31 26 25 21 20 16 15 0

SDL

101100
base rt offset

6 5 5 16

Doubleword at byte 2 in big-endian memory; each memory byte contains its own address

 most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Memory

A B C D E F G H GPR 24

After executing

0 1 A B C D E F 8 9 10 ... SDL $24,2($0)

 Then after

0 1 A B C D E F G H 10 ... SDR $24,9($0)

Store Doubleword Left SDL
268 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ithin an
e
d byte
The bytes stored from the source register to memory depend on both the offset of the effective address w
aligned doubleword—that is, the low 3 bits of the address (vAddr2..0)—and the current byte-ordering mode of th
processor (big- or little-endian). The figure below shows the bytes stored for every combination of offset an
ordering.

Figure 3-12 Bytes Stored by an SDL Instruction

Restrictions:

Initial Memory Contents and Byte Offsets Contents of

Source Registermost — significance — least

0 1 2 3 4 5 6 7 ←big-endian most — significance — least

i j k l m n o p A B C D E F G H

7 6 5 4 3 2 1 0 ←little-endian offset

Memory contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

A B C D E F G H 0 i j k l m n o A

i A B C D E F G 1 i j k l m n A B

i j A B C D E F 2 i j k l m A B C

i j k A B C D E 3 i j k l A B C D

i j k l A B C D 4 i j k A B C D E

i j k l m A B C 5 i j A B C D E F

i j k l m n A B 6 i A B C D E F G

i j k l m n o A 7 A B C D E F G H

Store Doubleword Left (cont.) SDL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 269

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
If BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..3 || 0 3

endif
bytesel ← vAddr 2..0 xor BigEndianCPU 3

datadoubleword ← 0 56–8*bytesel || GPR[rt] 63..56–8*bytesel
StoreMemory (CCA, byte, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

Store Doubleword Left (cont.) SDL
270 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

rm an
g

bytes in
SDR

Format: SDR rt, offset(base) MIPS64 (MIPS III)

Purpose:

To store the least-significant part of a doubleword to an unaligned memory address

Description: memory[base+offset] ← Some_Bytes_From rt

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the least-significant of 8 consecutive bytes forming a doubleword(DW) in memory, starting at an arbitrary
byte boundary.

A part ofDW, the least-significant 1 to 8 bytes, is in the aligned doubleword containingEffAddr. The same number of
least-significant (right) bytes of GPRrt are stored into these bytes ofDW.

The figure below illustrates this operation for big-endian byte ordering. The 8 consecutive bytes in 2..9 fo
unaligned doubleword starting at location 2. A part ofDW, 2 bytes, is located in the aligned doubleword containin
the least-significant byte at 9. First, SDR stores the 2 least-significant bytes of the source register into these
memory. Next, the complementary SDL stores the remainder ofDW.

Figure 3-13 Unaligned Doubleword Store With SDR and SDL

31 26 25 21 20 16 15 0

SDR

101101
base rt offset

6 5 5 16

Doubleword at byte 2 in memory, big-endian byte order, - each mem byte contains its address

 most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Memory

A B C D E F G H GPR 24

After executing

0 1 2 3 4 5 6 7 G H 10 ... SDR $24,9($0)

Then after

0 1 A B C D E F G H 10 ... SDL $24,2($0)

Store Doubleword Right SDR
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 271

ithin an
e
order-
The bytes stored from the source register to memory depend on both the offset of the effective address w
aligned doubleword—that is, the low 3 bits of the address (vAddr2..0)—and the current byte ordering mode of th
processor (big- or little-endian). Figure 3-14 shows the bytes stored for every combination of offset and byte-
ing.

Figure 3-14 Bytes Stored by an SDR Instruction

Restrictions:

Initial Memory contents and byte offsets Contents of

Source Registermost — significance — least

0 1 2 3 4 5 6 7 ←big--endian most — significance — least

i j k l m n o p A B C D E F G H

7 6 5 4 3 2 1 0 ←little-endian offset

Memory contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

H j k l m n o p 0 A B C D E F G H

G H k l m n o p 1 B C D E F G H p

F G H l m n o p 2 C D E F G H o p

E F G H m n o p 3 D E F G H n o p

D E F G H n o p 4 E F G H m n o p

C D E F G H o p 5 F G H l m n o p

B C D E F G H p 6 G H k l m n o p

A B C D E F G H 7 H j k l m n o p

Store Doubleword Right (cont.) SDR
272 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
If BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..3 || 0 3

endif
bytesel ← vAddr 1..0 xor BigEndianCPU 3

datadoubleword ← GPR[rt] 63–8*bytesel || 0 8*bytesel

StoreMemory (CCA, DOUBLEWORD-byte, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

Store Doubleword Right (cont.) SDR
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 273

274 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

SDXC1

Format: SDXC1 fs, index(base) MIPS64 (MIPS IV)

Purpose:

To store a doubleword from an FPR to memory (GPR+GPR addressing)

Description: memory[base+index] ← fs

The 64-bit doubleword in FPRfs is stored in memory at the location specified by the aligned effective address. The
contents of GPRindex and GPRbaseare added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)
StoreMemory(CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Coprocessor Unusable, Address Error, Reserved Instruction.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index fs

0

00000

SDXC1

001001

6 5 5 5 5 6

Store Doubleword Indexed from Floating Point SDXC1

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 275

SH

Format: SH rt, offset(base) MIPS32 (MIPS I)

Purpose:

To store a halfword to memory

Description: memory[base+offset] ← rt

The least-significant 16-bit halfword of registerrt is stored in memory at the location specified by the aligned effec-
tive address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr1 2..0 xor (ReverseEndian 2 || 0))
bytesel ← vAddr1 2..0 xor (BigEndianCPU 2 || 0)
datadoubleword ← GPR[rt] 63–8*bytesel..0 || 0 8*bytesel

StoreMemory (CCA, HALFWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SH
101001

base rt offset

6 5 5 16

Store Halfword SH

276 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

SLL

Format: SLL rd, rt, sa MIPS32 (MIPS I)

Purpose:

To left-shift a word by a fixed number of bits

Description: rd ← rt << sa

The contents of the low-order 32-bit word of GPRrt are shifted left, inserting zeros into the emptied bits; the word
result is sign-extended and placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions:

None

Operation:
s ← sa
temp ← GPR[rt] (31-s)..0 || 0 s

GPR[rd] ← sign_extend(temp)

Exceptions:

None

Programming Notes:

Unlike nearly all other word operations, the SLL input operand does not have to be a properly sign-extended word
value to produce a valid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination
register; this instruction with a zero shift amount truncates a 64-bit value to 32 bits and sign-extends it.

SLL r0, r0, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL r0, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue break on
superscalar processors.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SLL

000000

6 5 5 5 5 6

Shift Word Left Logical SLL

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 277

SLLV

Format: SLLV rd, rt, rs MIPS32 (MIPS I)

Purpose: To left-shift a word by a variable number of bits

Description: rd ← rt << rs

The contents of the low-order 32-bit word of GPRrt are shifted left, inserting zeros into the emptied bits; the result
word is sign-extended and placed in GPRrd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions: None

Operation:
s ← GPR[rs] 4..0
temp ← GPR[rt] (31-s)..0 || 0 s

GPR[rd] ← sign_extend(temp)

Exceptions: None

Programming Notes:

Unlike nearly all other word operations, the input operand does not have to be a properly sign-extended word value to
produce a valid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination register;
this instruction with a zero shift amount truncates a 64-bit value to 32 bits and sign-extends it.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLLV

000100

6 5 5 5 5 6

Shift Word Left Logical Variable SLLV

278 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

SLT

Format: SLT rd, rs, rt MIPS32 (MIPS I)

Purpose:

To record the result of a less-than comparison

Description: rd ← (rs < rt)

Compare the contents of GPRrs and GPRrt as signed integers and record the Boolean result of the comparison in
GPRrd. If GPRrs is less than GPRrt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
GPR[rd] ← 0 GPRLEN-1 || 1

else
GPR[rd] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLT

101010

6 5 5 5 5 6

Set on Less Than SLT

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 279

SLTI

Format: SLTI rt, rs, immediate MIPS32 (MIPS I)

Purpose:

To record the result of a less-than comparison with a constant

Description: rt ← (rs < immediate)

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers and record the Boolean result of
the comparison in GPRrt. If GPRrs is less thanimmediate,the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
GPR[rd] ← 0 GPRLEN-1|| 1

else
GPR[rd] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTI

001010
rs rt immediate

6 5 5 16

Set on Less Than Immediate SLTI

280 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

SLTIU

Format: SLTIU rt, rs, immediate MIPS32 (MIPS I)

Purpose:

To record the result of an unsigned less-than comparison with a constant

Description: rt ← (rs < immediate)

Compare the contents of GPRrs and the sign-extended 16-bitimmediateas unsigned integers and record the Boolean
result of the comparison in GPRrt. If GPRrs is less thanimmediate, the result is 1 (true); otherwise, it is 0 (false).

Because the 16-bitimmediateis sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
GPR[rd] ← 0 GPRLEN-1 || 1

else
GPR[rd] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTIU

001011
rs rt immediate

6 5 5 16

Set on Less Than Immediate Unsigned SLTIU

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 281

SLTU

Format: SLTU rd, rs, rt MIPS32 (MIPS I)

Purpose:

To record the result of an unsigned less-than comparison

Description: rd ← (rs < rt)

Compare the contents of GPRrs and GPRrt as unsigned integers and record the Boolean result of the comparison in
GPRrd. If GPRrs is less than GPRrt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd] ← 0 GPRLEN-1 || 1

else
GPR[rd] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLTU

101011

6 5 5 5 5 6

Set on Less Than Unsigned SLTU

282 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

SQRT.fmt

Format: SQRT.S fd, fs MIPS32 (MIPS II)
SQRT.D fd, fs MIPS32 (MIPS II)

Purpose:

To compute the square root of an FP value

Description: fd ← SQRT(fs)

The square root of the value in FPRfs is calculated to infinite precision, rounded according to the current rounding
mode inFCSR, and placed into FPRfd. The operand and result are values in formatfmt.

If the value in FPRfs corresponds to – 0, the result is – 0.

Restrictions:

If the value in FPRfs is less than 0, an Invalid Operation condition is raised.

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Inexact, Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

SQRT

000100

6 5 5 5 5 6

Floating Point Square Root SQRT.fmt

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 283

SRA

Format: SRA rd, rt, sa MIPS32 (MIPS I)

Purpose:

To execute an arithmetic right-shift of a word by a fixed number of bits

Description: rd ← rt >> sa (arithmetic)

The contents of the low-order 32-bit word of GPRrt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is sign-extended and placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions:

On 64-bit processors, if GPRrt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UndefinedResult()

endif
s ← sa
temp ← (GPR[rt] 31) s || GPR[rt] 31..s
GPR[rd] ← sign_extend(temp)

Exceptions: None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SRA

000011

6 5 5 5 5 6

Shift Word Right Arithmetic SRA

284 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

SRAV

Format: SRAV rd, rt, rs MIPS32 (MIPS I)

Purpose:

To execute an arithmetic right-shift of a word by a variable number of bits

Description: rd ← rt >> rs (arithmetic)

The contents of the low-order 32-bit word of GPRrt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is sign-extended and placed in GPRrd. The bit-shift amount is specified by the low-order 5 bits
of GPRrs.

Restrictions:

On 64-bit processors, if GPRrt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UndefinedResult()

endif
s ← GPR[rs] 4..0
temp ← (GPR[rt] 31) s || GPR[rt] 31..s
GPR[rd] ← sign_extend(temp)

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SRAV

000111

6 5 5 5 5 6

Shift Word Right Arithmetic Variable SRAV

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 285

SRL

Format: SRL rd, rt, sa MIPS32 (MIPS I)

Purpose:

To execute a logical right-shift of a word by a fixed number of bits

Description: rd ← rt >> sa (logical)

The contents of the low-order 32-bit word of GPRrt are shifted right, inserting zeros into the emptied bits; the word
result is sign-extended and placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions:

On 64-bit processors, if GPRrt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UndefinedResult()

endif
s ← sa
temp ← 0 s || GPR[rt] 31..s
GPR[rd] ← sign_extend(temp)

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SRL

000010

6 5 5 5 5 6

Shift Word Right Logical SRL

286 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

SRLV

Format: SRLV rd, rt, rs MIPS32 (MIPS I)

Purpose:

To execute a logical right-shift of a word by a variable number of bits

Description: rd ← rt >> rs (logical)

The contents of the low-order 32-bit word of GPRrt are shifted right, inserting zeros into the emptied bits; the word
result is sign-extended and placed in GPRrd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions:

On 64-bit processors, if GPRrt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UndefinedResult()

endif
s ← GPR[rs] 4..0
temp ← 0 s || GPR[rt] 31..s
GPR[rd] ← sign_extend(temp)

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SRLV

000110

6 5 5 5 5 6

Shift Word Right Logical Variable SRLV

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 287

SSNOP

Format: SSNOP MIPS32

Purpose:

Break superscalar issue on a superscalar processor.

Description:

SSNOP is the assembly idiom used to denote superscalar no operation. The actual instruction is interpreted by the
hardware as SLL r0, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instruction to
single-issue. The processor must then end the current instruction issue between the instruction previous to the SSNOP
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On a single-issue processor, this instruction is a NOP that takes an issue slot.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

SSNOP is intended for use primarily to allow the programmer control over CP0 hazards by converting instructions
into cycles in a superscalar processor. For example, to insert at least two cycles between an MTC0 and an ERET, one
would use the following sequence:

mtc0 x,y
ssnop
ssnop
eret

Based on the normal issues rules of the processor, the MTC0 issues in cycle T. Because the SSNOP instructions must
issue alone, they may issue no earlier than cycle T+1 and cycle T+2, respectively. Finally, the ERET issues no earlier
than cycle T+3. Note that although the instruction after an SSNOP may issue no earlier than the cycle after the
SSNOP is issued, that instruction may issue later. This is because other implementation-dependent issue rules may
apply that prevent an issue in the next cycle. Processors should not introduce any unnecessary delay in issuing
SSNOP instructions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000

0

00000

0

00000

1

00001

SLL

000000

6 5 5 5 5 6

Superscalar No Operation SSNOP

288 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

SUB

Format: SUB rd, rs, rt MIPS32 (MIPS I)

Purpose:

To subtract 32-bit integers. If overflow occurs, then trap

Description: rd ← rs - rt

The 32-bit word value in GPRrt is subtracted from the 32-bit value in GPRrs to produce a 32-bit result. If the sub-
traction results in 32-bit 2’s complement arithmetic overflow, then the destination register is not modified and an Inte-
ger Overflow exception occurs. If it does not overflow, the 32-bit result is sign-extended and placed into GPRrd.

Restrictions:

On 64-bit processors, if either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation isUNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UndefinedResult()

endif
temp ← (GPR[rs] 31||GPR[rs] 31..0) − (GPR[rt] 31||GPR[rt] 31..0)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← sign_extend(temp 31..0)
endif

Exceptions:

Integer Overflow

Programming Notes:

SUBU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SUB

100010

6 5 5 5 5 6

Subtract Word SUB

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 289

SUB.fmt

[c

Format: SUB.S fd, fs, ft MIPS32 (MIPS I)
SUB.D fd, fs, ft MIPS32 (MIPS I)
SUB.PS fd, fs, ft MIPS64 (MIPS V)

Purpose:

To subtract FP values

Description: fd ← fs - ft

The value in FPRft is subtracted from the value in FPRfs. The result is calculated to infinite precision, rounded
according to the current rounding mode inFCSR, and placed into FPRfd. The operands and result are values in for-
matfmt. SUB.PS subtracts the upper and lower halves of FPRfsand FPRft independently, and ORs together any gen-
erated exceptional conditions.

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of typefmt. If they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of SUB.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) – fmt ValueFPR(ft, fmt))

CPU Exceptions:

Coprocessor Unusable, Reserved Instruction

FPU Exceptions:

Inexact, Overflow, Underflow, Invalid Op, Unimplemented Op

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

SUB

000001

6 5 5 5 5 6

Floating Point Subtract SUB.fmt

290 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

SUBU

Format: SUBU rd, rs, rt MIPS32 (MIPS I)

Purpose:

To subtract 32-bit integers

Description: rd ← rs - rt

The 32-bit word value in GPRrt is subtracted from the 32-bit value in GPRrs and the 32-bit arithmetic result is
sign-extended and placed into GPRrd.

No integer overflow exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation isUNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UndefinedResult()

endif
temp ← GPR[rs] - GPR[rt]
GPR[rd] ← sign_extend(temp)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SUBU

100011

6 5 5 5 5 6

Subtract Unsigned Word SUBU

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 291

SUXC1

Format: SUXC1 fs, index(base) MIPS64 (MIPS V)

Purpose:

To store a doubleword from an FPR to memory (GPR+GPR addressing) ignoring alignment

Description: memory[(base+index) PSIZE-1..3] ← fs

The contents of the 64-bit doubleword in FPRfs is stored at the memory location specified by the effective address.
The contents of GPRindexand GPRbaseare added to form the effective address. The effective address is double-
word-aligned; EffectiveAddress2..0 are ignored.

Restrictions:

The result of this instruction is undefined if the processor is executing in 16 FP registers mode.

Operation:

vAddr ← (GPR[base]+GPR[index]) 63..3 || 0 3

(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_WORD) || 0 8*bytesel

StoreMemory(CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index fs

0

00000

SUXC1

001101

6 5 5 5 5 6

Store Doubleword Indexed Unaligned from Floating Point SUXC1

292 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

SW

Format: SW rt, offset(base) MIPS32 (MIPS I)

Purpose:

To store a word to memory

Description: memory[base+offset] ← rt

The least-significant 32-bit word of registerrt is stored in memory at the location specified by the aligned effective
address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
datadoubleword ← GPR[rt] 63-8*bytesel..0 || 0 8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SW

101011
base rt offset

6 5 5 16

Store Word SW

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 293

SWC1

Format: SWC1 ft, offset(base) MIPS32 (MIPS I)

Purpose:

To store a word from an FPR to memory

Description: memory[base+offset] ← ft

The low 32-bit word from FPRft is stored in memory at the location specified by the aligned effective address. The
16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_WORD) || 0 8*bytesel

StoreMemory(CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SWC1

111001
base ft offset

6 5 5 16

Store Word from Floating Point SWC1

294 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

SWC2

Format: SWC2 rt, offset(base) MIPS32 (MIPS I)

Purpose:

To store a word from a COP2 register to memory

Description: memory[base+offset] ← ft

The low 32-bit word from COP2 (Coprocessor 2) registerrt is stored in memory at the location specified by the
aligned effective address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
datadoubleword ← CPR[2,rt,0] 63-8*bytesel..0 || 0 8*bytesel

StoreMemory(CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SWC2

111010
base rt offset

6 5 5 16

Store Word from Coprocessor 2 SWC2

he 4

from
aligned

ithin an
or
ering.
SWL

Format: SWL rt, offset(base) MIPS32 (MIPS I)

Purpose:

To store the most-significant part of a word to an unaligned memory address

Description: memory[base+offset] ← rt

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

A part of W, the most-significant 1 to 4 bytes, is in the aligned word containingEffAddr. The same number of the
most-significant (left) bytes from the word in GPRrt are stored into these bytes ofW.

If GPR rt is a 64-bit register, the source word is the low word of the register.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. T
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is located in the aligned
word containing the most-significant byte at 2. First, SWL stores the most-significant 2 bytes of the low word
the source register into these 2 bytes in memory. Next, the complementary SWR stores the remainder of the un
word.

Figure 3-15 Unaligned Word Store Using SWL and SWR

The bytes stored from the source register to memory depend on both the offset of the effective address w
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the process
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ord

31 26 25 21 20 16 15 0

SWL

101010
base rt offset

6 5 5 16

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address

most — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

GPR 24 A B C D E F G H

0 1 E F 4 5 6 ... After executingSWL $24,2($0)

0 1 E F G H 6 ... Then afterSWR $24,5($0)

Store Word Left SWL
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 295

Figure 3-16 Bytes Stored by an SWL Instruction

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
If BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

if (vAddr 2 xor BigEndianCPU) = 0 then
datadoubleword ← 0 32 || 0 24-8*byte || GPR[rt] 31..24-8*byte

else
datadoubleword ← 0 24-8*byte || GPR[rt] 31..24-8*byte || 0 32

endif

StoreMemory(CCA, byte, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian 64-bit register

i j k l offset (vAddr1..0) A B C D E F G H

3 2 1 0 ←little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian
byte ordering vAddr1..0

Little-endian
byte ordering

E F G H 0 i j k E

i E F G 1 i j E F

i j E F 2 i E F G

i j k E 3 E F G H

Store Word Left (cont.) SWL
296 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

he 4

word
r of the
SWR

Format: SWR rt, offset(base) MIPS32 (MIPS I)

Purpose:

To store the least-significant part of a word to an unaligned memory address

Description: memory[base+offset] ← rt

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containingEffAddr. The same number of the
least-significant (right) bytes from the word in GPRrt are stored into these bytes ofW.

If GPR rt is a 64-bit register, the source word is the low word of the register.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. T
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is contained in the
aligned word containing the least-significant byte at 5. First, SWR stores the least-significant 2 bytes of the low
from the source register into these 2 bytes in memory. Next, the complementary SWL stores the remainde
unaligned word.

Figure 3-17 Unaligned Word Store Using SWR and SWL

31 26 25 21 20 16 15 0

SWR

101110
base rt offset

6 5 5 16

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address

least — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

GPR 24 A B C D E F G H

0 1 2 3 G H 6 ... After executingSWR $24,5($0)

0 1 E F G H 6 ... Then afterSWL $24,2($0)

Store Word Right SWR
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 297

ithin an
or
ering.
The bytes stored from the source register to memory depend on both the offset of the effective address w
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the process
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ord

Figure 3-18 Bytes Stored by SWR Instruction

Restrictions:

None

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
If BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

if (vAddr 2 xor BigEndianCPU) = 0 then
datadoubleword ← 0 32 || GPR[rt] 31-8*byte..0 || 0 8*byte

else
datadoubleword ← GPR[rt] 31-8*byte..0 || 0 8*byte || 0 32

endif

StoreMemory(CCA, WORD-byte, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ← big-endian 64-bit register

i j k l offset (vAddr1..0) A B C D E F G H

3 2 1 0 ← little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian
byte ordering vAddr1..0

Little-endian byte
ordering

H j k l 0 E F G H

G H k l 1 F G H l

F G H l 2 G H k l

E F G H 3 H j k l

Store Word Right (cont.) SWR
298 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 299

SWXC1

Format: SWXC1 fs, index(base) MIPS64 (MIPS IV)

Purpose:

To store a word from an FPR to memory (GPR+GPR addressing)

Description: memory[base+index] ← fs

The low 32-bit word from FPRfs is stored in memory at the location specified by the aligned effective address. The
contents of GPRindex and GPRbaseare added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr 1..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_WORD) || 0 8*bytesel

StoreMemory(CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index fs

0

00000

SWXC1

001000

6 5 5 5 5 6

Store Word Indexed from Floating Point SWXC1

NC

isible to

ible
xit from

eam
ter the
SYNC

Format: SYNC (stype = 0 implied) MIPS32 (MIPS II)

Purpose:

To order loads and stores.

Description:

Simple Description:

• SYNC affects onlyuncachedandcached coherentloads and stores. The loads and stores that occur before the SY
must be completed before the loads and stores after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is v
every other processor in the system.

• SYNC is required, potentially in conjunction with SSNOP, to guarantee that memory reference results are vis
across operating mode changes. For example, a SYNC is required on some implementations on entry to and e
Debug Mode to guarantee that memory affects are handled correctly.

Detailed Description:

• When thestype field has a value of zero, every synchronizable load and store that occurs in the instruction str
before the SYNC instruction must be globally performed before any synchronizable load or store that occurs af
SYNC can be performed, with respect to any other processor or coherent I/O module.

• SYNC does not guarantee the order in which instruction fetches are performed. Thestype values 1-31 are reserved;
they produce the same result as the value zero.

•

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000 0000 0
stype

SYNC

001111

6 15 5 6

Synchronize Shared Memory SYNC
300 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

n

sult
uent

emory

e value

rs

ect
ds and
Terms:

Synchronizable: A load or store instruction issynchronizableif the load or store occurs to a physical location i
shared memory using a virtual location with a memory access type of eitheruncachedor cached coherent. Shared
memory is memory that can be accessed by more than one processor or by a coherent I/O system module.

Performed load:A load instruction isperformedwhen the value returned by the load has been determined. The re
of a load on processor A has beendeterminedwith respect to processor or coherent I/O module B when a subseq
store to the location by B cannot affect the value returned by the load. The store by B must use the same m
access type as the load.

Performed store:A store instruction isperformedwhen the store is observable. A store on processor A isobservable
with respect to processor or coherent I/O module B when a subsequent load of the location by B returns th
written by the store. The load by B must use the same memory access type as the store.

Globally performed load:A load instruction isglobally performedwhen it is performed with respect to all processo
and coherent I/O modules capable of storing to the location.

Globally performed store:A store instruction isglobally performedwhen it is globally observable. It isglobally
observable when it is observable by all processors and I/O modules capable of loading from the location.

Coherent I/O module:A coherent I/O moduleis an Input/Output system component that performs coherent Dir
Memory Access (DMA). It reads and writes memory independently as though it were a processor doing loa
stores to locations with a memory access type ofcached coherent.

Synchronize Shared Memory (cont.) SYNC
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 301

e mem-

mul-
ors—the
ms.

, SYNC

ocessor
explicit

uction
e proces-
t of any

ting pro-

strongly
ms that

ram that
hat does
reliably

ade to
ferences
Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other thanuncachedandcached
coherent is UNPREDICTABLE .

Operation:
SyncOperation(stype)

Exceptions:

None

Programming Notes:

A processor executing load and store instructions observes the order in which loads and stores using the sam
ory access type occur in the instruction stream; this is known asprogram order.

A parallel programhas multiple instruction streams that can execute simultaneously on different processors. In
tiprocessor (MP) systems, the order in which the effects of loads and stores are observed by other process
global order of the loads and store—determines the actions necessary to reliably share data in parallel progra

When all processors observe the effects of loads and stores in program order, the system isstrongly ordered. On such
systems, parallel programs can reliably share data without explicit actions in the programs. For such a system
has the same effect as a NOP. Executing SYNC on such a system is not necessary, but neither is it an error.

If a multiprocessor system is not strongly ordered, the effects of load and store instructions executed by one pr
may be observed out of program order by other processors. On such systems, parallel programs must take
actions to reliably share data. At critical points in the program, the effects of loads and stores from an instr
stream must occur in the same order for all processors. SYNC separates the loads and stores executed on th
sor into two groups, and the effect of all loads and stores in one group is seen by all processors before the effec
load or store in the subsequent group. In effect, SYNC causes the system to be strongly ordered for the execu
cessor at the instant that the SYNC is executed.

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate as
ordered for at least one memory access type. The MIPS architecture also permits implementation of MP syste
are not strongly ordered; SYNC enables the reliable use of shared memory on such systems. A parallel prog
does not use SYNC generally does not operate on a system that is not strongly ordered. However, a program t
use SYNC works on both types of systems. (System-specific documentation describes the actions needed to
share data in parallel programs for that system.)

The behavior of a load or store using one memory access type is undefined if a load or store was previously m
the same physical location using a different memory access type. The presence of a SYNC between the re
does not alter this behavior.

Synchronize Shared Memory (cont.) SYNC
302 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

gener-
g. The
, is not

ctions,

ations is

rate writer
treams
tore of
sures
SYNC affects the order in which the effects of load and store instructions appear to all processors; it does not
ally affect the physical memory-system ordering or synchronization issues that arise in system programmin
effect of SYNC on implementation-specific aspects of the cached memory system, such as writeback buffers
defined. The effect of SYNC on reads or writes to memory caused by privileged implementation-specific instru
such as CACHE, also is not defined.

Processor A (writer)
Conditions at entry:
The value 0 has been stored in FLAG and that value is observable by B
SW R1, DATA # change shared DATA value
LI R2, 1
SYNC # Perform DATA store before performing FLAG store
SW R2, FLAG # say that the shared DATA value is valid

Processor B (reader)
LI R2, 1

1: LW R1, FLAG # Get FLAG
BNE R2, R1, 1B# if it says that DATA is not valid, poll again
NOP
SYNC # FLAG value checked before doing DATA read
LW R1, DATA # Read (valid) shared DATA value

Prefetch operations have no effect detectable by User-mode programs, so ordering the effects of prefetch oper
not meaningful.

The code fragments above shows how SYNC can be used to coordinate the use of shared data between sepa
and reader instruction streams in a multiprocessor environment. The FLAG location is used by the instruction s
to determine whether the shared data item DATA is valid. The SYNC executed by processor A forces the s
DATA to be performed globally before the store to FLAG is performed. The SYNC executed by processor B en
that DATA is not read until after the FLAG value indicates that the shared data is valid.

Synchronize Shared Memory (cont.) SYNC
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 303

304 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

SYSCALL

Format: SYSCALL MIPS32 (MIPS I)

Purpose:

To cause a System Call exception

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

Thecodefield is available for use as software parameters, but is retrieved by the exception handler only by loading
the contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(SystemCall)

Exceptions:

System Call

31 26 25 6 5 0

SPECIAL

000000
code

SYSCALL

001100

6 20 6

System Call SYSCALL

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 305

TEQ

Format: TEQ rs, rt MIPS32 (MIPS II)

Purpose:

To compare GPRs and do a conditional trap

Description: if rs = rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is equal to GPRrt, then take a Trap excep-
tion.

The contents of thecodefield are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] = GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TEQ

110100

6 5 5 10 6

Trap if Equal TEQ

306 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

TEQI

Format: TEQI rs, immediate MIPS32 (MIPS II)

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs = immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is equal toimmediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] = sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TEQI

01100
immediate

6 5 5 16

Trap if Equal Immediate TEQI

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 307

TGE

Format: TGE rs, rt MIPS32 (MIPS II)

Purpose:

To compare GPRs and do a conditional trap

Description: if rs ≥ rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is greater than or equal to GPRrt, then take
a Trap exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≥ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TGE

110000

6 5 5 10 6

Trap if Greater or Equal TGE

308 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

TGEI

Format: TGEI rs, immediate MIPS32 (MIPS II)

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs ≥ immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is greater than or equal
to immediate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≥ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TGEI

01000
immediate

6 5 5 16

Trap if Greater or Equal Immediate TGEI

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 309

TGEIU

Format: TGEIU rs, immediate MIPS32 (MIPS II)

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs ≥ immediate then Trap

Compare the contents of GPRrs and the 16-bit sign-extendedimmediateas unsigned integers; if GPRrs is greater
than or equal toimmediate, then take a Trap exception.

Because the 16-bitimmediateis sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TGEIU

01001
immediate

6 5 5 16

Trap if Greater or Equal Immediate Unsigned TGEIU

310 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

TGEU

Format: TGEU rs, rt MIPS32 (MIPS II)

Purpose:

To compare GPRs and do a conditional trap

Description: if rs ≥ rt then Trap

Compare the contents of GPRrs and GPRrt as unsigned integers; if GPRrs is greater than or equal to GPRrt, then
take a Trap exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TGEU

110001

6 5 5 10 6

Trap if Greater or Equal Unsigned TGEU

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 311

TLBP

Format: TLBP MIPS32

Purpose:

To find a matching entry in the TLB.

Description:

TheIndexregister is loaded with the address of the TLB entry whose contents match the contents of theEntryHi reg-
ister. If no TLB entry matches, the high-order bit of theIndex register is set.

Restrictions:

Operation:

Index ← 1 || UNPREDICTABLE31

for i in 0...TLBEntries-1
if ((TLB[i] VPN2 and not (TLB[i] Mask)) =

(EntryHi VPN2 and not (TLB[i] Mask))) and
(TLB[i] R = EntryHi R) and
((TLB[i] G = 1) or (TLB[i] ASID = EntryHi ASID)) then
Index ← i

endif
endfor

Exceptions:

Coprocessor Unusable

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBP

001000

6 1 19 6

Probe TLB for Matching Entry TLBP

to

the
cant
TLB

nds to
d or

TLB
TLBR

Format: TLBR MIPS32

Purpose:

To read an entry from the TLB.

Description:

TheEntryHi, EntryLo0, EntryLo1, andPageMaskregisters are loaded with the contents of the TLB entry pointed
by the Index register. Note that the value written to theEntryHi, EntryLo0, andEntryLo1registers may be different
from that originally written to the TLB via these registers in that:

• The value returned in the VPN2 field of theEntryHi register may havethose bits set to zero corresponding to
one bits in the Mask field of the TLB entry (the least significant bit of VPN2 corresponds to the least signifi
bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed after a
entry is written and then read.

• The value returned in the PFN field of theEntryLo0 andEntryLo1 registers may havethose bits set to zero
corresponding to the one bits in the Mask field of the TLB entry (the least significant bit of PFN correspo
the least significant bit of the Mask field). It is implementation dependent whether these bits are preserve
zeroed after a TLB entry is written and then read.

• The value returned in the G bit in both theEntryLo0 andEntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits inEntryLo0 andEntryLo1 when
the TLB was written.

Restrictions:

The operation isUNDEFINED if the contents of the Index register are greater than or equal to the number of
entries in the processor.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBR

000001

6 1 19 6

Read Indexed TLB Entry TLBR
312 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Operation:

i ← Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
PageMaskMask ← TLB[i] Mask
EntryHi ← TLB[i] R || 0 Fill ||

(TLB[i] VPN2 and not TLB[i] Mask) || # Masking implementation dependent
05 || TLB[i] ASID

EntryLo1 ← 0 Fill ||
(TLB[i] PFN1 and not TLB[i] Mask) || # Masking mplementation dependent
TLB[i] C1 || TLB[i] D1 || TLB[i] V1 || TLB[i] G

EntryLo0 ← 0 Fill ||
(TLB[i] PFN0 and not TLB[i] Mask) || # Masking mplementation dependent
TLB[i] C0 || TLB[i] D0 || TLB[i] V0 || TLB[i] G

Exceptions:

Coprocessor Unusable

Read Indexed TLB Entry TLBR
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 313

 one

ed

ing to

ed

TLB
TLBWI

Format: TLBWI MIPS32

Purpose:

To write a TLB entry indexed by theIndex register.

Description:

The TLB entry pointed to by the Index register is written from the contents of theEntryHi, EntryLo0, EntryLo1, and
PageMaskregisters. The information written to the TLB entry may be different from that in theEntryHi, EntryLo0,
andEntryLo1 registers, in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the
bits in the Mask field of thePageMask register (the least significant bit of VPN2 corresponds to the least
significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zero
during a TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero correspond
the one bits in the Mask field ofPageMask register (the least significant bit of PFN corresponds to the least
significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zero
during a TLB write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in theEntryLo0 andEntryLo1
registers.

Restrictions:

The operation isUNDEFINED if the contents of the Index register are greater than or equal to the number of
entries in the processor.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBWI

000010

6 1 19 6

Write Indexed TLB Entry TLBWI
314 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Operation:

i ← Index
TLB[i] Mask ← PageMaskMask
TLB[i] R ← EntryHi R
TLB[i] VPN2 ← EntryHi VPN2 and not PageMask Mask # Implementation dependent
TLB[i] ASID ← EntryHi ASID
TLB[i] G ← EntryLo1 G and EntryLo0 G
TLB[i] PFN1 ← EntryLo1 PFN and not PageMask Mask # Implementation dependent
TLB[i] C1 ← EntryLo1 C
TLB[i] D1 ← EntryLo1 D
TLB[i] V1 ← EntryLo1 V
TLB[i] PFN0 ← EntryLo0 PFN and not PageMask Mask # Implementation dependent
TLB[i] C0 ← EntryLo0 C
TLB[i] D0 ← EntryLo0 D
TLB[i] V0 ← EntryLo0 V

Exceptions:

Coprocessor Unusable

Write Indexed TLB Entry TLBWI
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 315

 one

ed

ing to

ed

TLB
TLBWR

Format: TLBWR MIPS32

Purpose:

To write a TLB entry indexed by theRandom register.

Description:

The TLB entry pointed to by theRandomregister is written from the contents of theEntryHi, EntryLo0, EntryLo1,
and PageMaskregisters. The information written to the TLB entry may be different from that in theEntryHi,
EntryLo0, andEntryLo1 registers, in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the
bits in the Mask field of thePageMask register (the least significant bit of VPN2 corresponds to the least
significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zero
during a TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero correspond
the one bits in the Mask field ofPageMask register (the least significant bit of PFN corresponds to the least
significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zero
during a TLB write.

• The value returned in the G bit in both theEntryLo0 andEntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits inEntryLo0 andEntryLo1 when
the TLB was written.

Restrictions:

The operation isUNDEFINED if the contents of the Index register are greater than or equal to the number of
entries in the processor.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBWR

000110

6 1 19 6

Write Random TLB Entry TLBWR
316 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

Operation:

i ← Random
TLB[i] Mask ← PageMaskMask
TLB[i] R ← EntryHi R
TLB[i] VPN2 ← EntryHi VPN2 and not PageMask Mask # Implementation dependent
TLB[i] ASID ← EntryHi ASID
TLB[i] G ← EntryLo1 G and EntryLo0 G
TLB[i] PFN1 ← EntryLo1 PFN and not PageMask Mask # Implementation dependent
TLB[i] C1 ← EntryLo1 C
TLB[i] D1 ← EntryLo1 D
TLB[i] V1 ← EntryLo1 V
TLB[i] PFN0 ← EntryLo0 PFN and not PageMask Mask # Implementation dependent
TLB[i] C0 ← EntryLo0 C
TLB[i] D0 ← EntryLo0 D
TLB[i] V0 ← EntryLo0 V

Exceptions:

Coprocessor Unusable

Write Random TLB Entry TLBWR
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 317

318 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

TLT

Format: TLT rs, rt MIPS32 (MIPS II)

Purpose:

To compare GPRs and do a conditional trap

Description: if rs < rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is less than GPRrt, then take a Trap excep-
tion.

The contents of thecodefield are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TLT

110010

6 5 5 10 6

Trap if Less Than TLT

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 319

TLTI

Format: TLTI rs, immediate MIPS32 (MIPS II)

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs < immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is less thanimmediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TLTI

01010
immediate

6 5 5 16

Trap if Less Than Immediate TLTI

320 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

TLTIU

Format: TLTIU rs, immediate MIPS32 (MIPS II)

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs < immediate then Trap

Compare the contents of GPRrs and the 16-bit sign-extendedimmediateas unsigned integers; if GPRrs is less than
immediate, then take a Trap exception.

Because the 16-bitimmediateis sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TLTIU

01011
immediate

6 5 5 16

Trap if Less Than Immediate Unsigned TLTIU

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 321

TLTU

Format: TLTU rs, rt MIPS32 (MIPS II)

Purpose:

To compare GPRs and do a conditional trap

Description: if rs < rt then Trap

Compare the contents of GPRrs and GPRrt as unsigned integers; if GPRrs is less than GPRrt, then take a Trap
exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TLTU

110011

6 5 5 10 6

Trap if Less Than Unsigned TLTU

322 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

TNE

Format: TNE rs, rt MIPS32 (MIPS II)

Purpose:

To compare GPRs and do a conditional trap

Description: i f rs ≠ rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is not equal to GPRrt, then take a Trap
exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≠ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TNE

110110

6 5 5 10 6

Trap if Not Equal TNE

TNEI

Format: TNEI rs, immediate MIPS32 (MIPS II)

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs ≠ immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is not equal toimme-
diate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≠ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TNEI

01110
immediate

6 5 5 16

Trap if Not Equal TNEI
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 323

324 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ero

set in

t

TRUNC.L.fmt

Format: TRUNC.L.S fd, fs MIPS64 (MIPS III)
TRUNC.L.D fd, fs MIPS64 (MIPS III)

Purpose:

To convert an FP value to 64-bit fixed point, rounding toward zero

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward z
(rounding mode 1). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is
theFCSR. If the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 263-1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for long fixed point; if they are not valid, the resul
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

TRUNC.L

001001

6 5 5 5 5 6

Floating Point Truncate to Long Fixed Point TRUNC.L.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 325

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Overflow, Inexact

Floating Point Truncate to Long Fixed Point (cont.) TRUNC.L.fmt
326 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

rd

set in

t

TRUNC.W.fmt

Format: TRUNC.W.S fd, fs MIPS32 (MIPS II)
TRUNC.W.D fd, fs MIPS32 (MIPS II)

Purpose:

To convert an FP value to 32-bit fixed point, rounding toward zero

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 32-bit word fixed point format using rounding towa
zero (rounding mode 1). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is
theFCSR. If the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for word fixed point; if they are not valid, the resul
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

TRUNC.W

001101

6 5 5 5 5 6

Floating Point Truncate to Word Fixed Point TRUNC.W.fmt
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 327

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Overflow, Unimplemented Operation

Floating Point Truncate to Word Fixed Point (cont.) TRUNC.W.fmt
328 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

ode.
roces-
must

nter-
request
dent
e cause
WAIT

ruc-

.

a

WAIT

Format: WAIT MIPS32

Purpose:

Wait for Event

Description:

The WAIT instruction performs an implementation-dependent operation, usually involving a lower power m
Software may use bits 24:6 of the instruction to communicate additional information to the processor, and the p
sor may use this information as control for the lower power mode. A value of zero for bits 24:6 is the default and
be valid in all implementations.

The WAIT instruction is typically implemented by stalling the pipeline at the completion of the instruction and e
ing a lower power mode. The pipeline is restarted when an external event, such as an interrupt or external
occurs, and execution continues with the instruction following the WAIT instruction. It is implementation-depen
whether the pipeline restarts when a non-enabled interrupt is requested. In this case, software must poll for th
of the restart. If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the
instruction and the following instruction (EPC for the interrupt points at the instruction following the WAIT inst
tion).

The assertion of any reset or NMI must restart the pipelihne and the corresponding exception myust be taken

Restrictions:

The operation of the processor isUNDEFINED if a WAIT instruction is placed in the delay slot of a branch or
jump.

31 26 25 24 6 5 0

COP0

010000

CO

1
Implementation-Dependent Code

WAIT

100000

6 1 19 6

Enter Standby Mode WAIT
MIPS64™ Architecture For Programmers Volume II, Revision 0.95 329

Operation:

Enter implementation dependent lower power mode

Exceptions:

Coprocessor Unusable Exception

Enter Standby Mode (cont.) WAIT
330 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 331

XOR

Format: XOR rd, rs, rt MIPS32 (MIPS I)

Purpose:

To do a bitwise logical Exclusive OR

Description: rd ← rs XOR rt

Combine the contents of GPRrs and GPRrt in a bitwise logical Exclusive OR operation and place the result into
GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] xor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

XOR

100110

6 5 5 5 5 6

Exclusive OR XOR

332 MIPS64™ Architecture For Programmers Volume II, Revision 0.95

XORI

Format: XORI rt, rs, immediate MIPS32 (MIPS I)

Purpose:

To do a bitwise logical Exclusive OR with a constant

Description: rt ← rs XOR immediate

Combine the contents of GPRrs and the 16-bit zero-extendedimmediatein a bitwise logical Exclusive OR operation
and place the result into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] xor zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

XORI

001110
rs rt immediate

6 5 5 16

Exclusive OR Immediate XORI

MIPS64™ Architecture For Programmers Volume II, Revision 0.95 333

Appendix A

Revision History

Revision Date Description

0.90 November 1, 2000 Internal review copy of reorganized and updated architecture documentation.

0.91 November 15, 2000 External review copy of reorganized and updated architecture documentation.

0.92 December 15, 2000

Changes in this revision:

• Correct sign in description of MSUBU.

• Update JR and JALR instructions to reflect the changes required by
MIPS16.

0.95 March 12, 2001 Update for second external review release.

	MIPS64™ Architecture For Programmers Volume�II: The MIPS64™ Instruction Set
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	Guide to the Instruction Set
	2.1� Understanding the Instruction Fields
	2.1.1� Instruction Fields
	2.1.2� Instruction Descriptive Name and Mnemonic
	2.1.3� Format Field
	2.1.4� Purpose Field
	2.1.5� Description Field
	2.1.6� Restrictions Field
	2.1.7� Operation Field
	2.1.8� Exceptions Field
	2.1.9� Programming Notes and Implementation Notes Fields

	2.2� Operation Section Notation and Functions
	2.2.1� Instruction Execution Ordering
	2.2.2� Pseudocode Functions
	2.2.2.1� Coprocessor General Register Access Functions
	COP_LW
	COP_LD
	COP_SW
	COP_SD

	2.2.2.2� Load Memory and Store Memory Functions
	AddressTranslation
	LoadMemory
	StoreMemory
	Prefetch

	2.2.2.3� Access Functions for Floating Point Registers
	ValueFPR
	StoreFPR

	2.2.2.4� Miscellaneous Functions
	SyncOperation
	SignalException
	NullifyCurrentInstruction
	CoprocessorOperation
	JumpDelaySlot
	NotWordValue
	FPConditionCode
	SetFPConditionCode

	2.3� Op and Function Subfield Notation
	2.4� FPU Instructions

	The MIPS64™ Instruction Set
	3.1� Compliance and Subsetting
	3.2� Alphabetical List of Instructions
	ABS.fmt
	ADD
	ADD.fmt
	ADDI
	ADDIU
	ADDU
	ALNV.PS
	AND
	ANDI
	B
	BAL
	BC1F
	BC1FL
	BC1T
	BC1TL
	BC2F
	BC2FL
	BC2T
	BC2TL
	BEQ
	BEQL
	BGEZ
	BGEZAL
	BGEZALL
	BGEZL
	BGTZ
	BGTZL
	BLEZ
	BLEZL
	BLTZ
	BLTZAL
	BLTZALL
	BLTZL
	BNE
	BNEL
	BREAK
	C.cond.fmt
	CACHE
	CEIL.L.fmt
	CEIL.W.fmt
	CFC1
	CFC2
	CLO
	CLZ
	COP2
	CTC1
	CTC2
	CVT.D.fmt
	CVT.L.fmt
	CVT.PS.S
	CVT.S.fmt
	CVT.S.PL
	CVT.S.PU
	CVT.W.fmt
	DADD
	DADDI
	DADDIU
	DADDU
	DCLO
	DCLZ
	DDIV
	DDIVU
	DERET
	DIV
	DIV.fmt
	DIVU
	DMFC0
	DMFC1
	DMFC2
	DMTC0
	DMTC1
	DMTC2
	DMULT
	DMULTU
	DSLL
	DSLL32
	DSLLV
	DSRA
	DSRA32
	DSRAV
	DSRL
	DSRL32
	DSRLV
	DSUB
	DSUBU
	ERET
	FLOOR.L.fmt
	FLOOR.W.fmt
	J
	JAL
	JALR
	JR
	LB
	LBU
	LD
	LDC1
	LDC2
	LDL
	LDR
	LDXC1
	LH
	LHU
	LL
	LLD
	LUI
	LUXC1
	LW
	LWC1
	LWC2
	LWL
	LWR
	LWU
	LWXC1
	MADD
	MADD.fmt
	MADDU
	MFC0
	MFC1
	MFC2
	MFHI
	MFLO
	MOV.fmt
	MOVF
	MOVF.fmt
	MOVN
	MOVN.fmt
	MOVT
	MOVT.fmt
	MOVZ
	MOVZ.fmt
	MSUB
	MSUB.fmt
	MSUBU
	MTC0
	MTC1
	MTC2
	MTHI
	MTLO
	MUL
	MUL.fmt
	MULT
	MULTU
	NEG.fmt
	NMADD.fmt
	NMSUB.fmt
	NOP
	NOR
	OR
	ORI
	PLL.PS
	PLU.PS
	PREF
	PREFX
	PUL.PS
	PUU.PS
	RECIP.fmt
	ROUND.L.fmt
	ROUND.W.fmt
	RSQRT.fmt
	SB
	SC
	SCD
	SDi
	SDBBP
	SDC1
	SDC2
	SDL
	SDR
	SDXC1
	SH
	SLL
	SLLV
	SLT
	SLTI
	SLTIU
	SLTU
	SQRT.fmt
	SRA
	SRAV
	SRL
	SRLV
	SSNOP
	SUB
	SUB.fmt
	SUBU
	SUXC1
	SW
	SWC1
	SWC2
	SWL
	SWR
	SWXC1
	SYNC
	SYSCALL
	TEQ
	TEQI
	TGE
	TGEI
	TGEIU
	TGEU
	TLBP
	TLBR
	TLBWI
	TLBWR
	TLT
	TLTI
	TLTIU
	TLTU
	TNE
	TNEI
	TRUNC.L.fmt
	TRUNC.W.fmt
	WAIT
	XOR
	XORI

	Revision History

